Comparative Analysis of MRI, CT, and Ultrasound Imaging Modalities: Technological Advancements and Clinical Applications

Authors

  • Ziyan Song

DOI:

https://doi.org/10.54097/yhgzjq31

Keywords:

magnetic resonance imaging, computed tomography, ultrasound lmaging, clinical applications.

Abstract

This paper explores the development history, principles, and applications of three major medical imaging technologies—magnetic resonance imaging (MRI), computed tomography (CT), and ultrasound imaging—in modern medicine. By analyzing the advantages and limitations of each technology, it highlights MRI's excellence in soft tissue imaging, CT's efficiency in rapid bone imaging, and the unique value of ultrasound imaging in real-time dynamic detection. Additionally, the revolutionary applications of artificial intelligence in imaging technologies are discussed, and future development directions are proposed, including improving imaging speed, reducing radiation doses, and enhancing image resolution and functional integration. The complementary nature of these technologies provides a more comprehensive solution for clinical diagnostics.

Downloads

Download data is not yet available.

References

[1] I. Rabi, J. R. Zacharias, S. Millman, et al. “A New Method of Measuring Nuclear Magnetic Moment,” Physical Review, vol. 53, no. 4, pp. 318 – 318, Feb. 1938, doi: 10.1103/physrev.53.318.

[2] A. Prasad. Imperial Technoscience: Transnational Histories of MRI in the United States, Britain, and India. MIT Press, 2014.

[3] J. Garcia, N. A. Buchwald, B. H. Feder, R. A. Koelling, et al. “Sensitivity of the Head to X-Ray,” Science, vol. 144, no. 3625, pp. 1470 – 1472, Jun. 1964, doi: 10.1126/science.144.3625.1470.

[4] J. Radon. “Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten,” Proceedings of Symposia in Applied Mathematics, pp. 71 – 86, 1983, doi: 10.1090/psapm/027/692055.

[5] C. Richmond. “Sir Godfrey Hounsfield,” BMJ, vol. 329, no. 7467, p. 687.1, Sep. 2004, doi: 10.1136/bmj.329.7467.687.

[6] R. F. Mould. “Pierre Curie, 1859 – 1906,” Current Oncology, vol. 14, no. 2, pp. 74 – 82, Apr. 2007, doi: 10.3747/co.2007.110.

[7] R. L. Eisenberg, Radiology: An Illustrated History. 1992.

[8] Q. Wang. “Dual-Modality Virtual Biopsy System Integrating MRI and MG for Noninvasive Predicting HER2 Status in Breast Cancer,” Academic Radiology, Mar. 2025, doi: 10.1016/j.acra.2025.02.039.

[9] H. Y. Abu Mhanna. “Systematic review of functional magnetic resonance imaging (fMRI) applications in the preoperative planning and treatment assessment of brain tumors,” Heliyon, vol. 11, no. 3, p. e42464, Feb. 2025, doi: 10.1016/j.heliyon. 2025.e42464.

[10] C. Li. “Diagnostic Performance of Fractional Flow Reserve Derived from Coronary CT Angiography,” JACC: Cardiovascular Interventions, vol. 17, no. 17, pp. 1980 – 1992, Sep. 2024, doi: 10.1016/j.jcin.2024.06.027.

[11] L. Sukupova. “Comparison of radiation dose and image quality for abdominal CT exams using photon-counting and energy-integrating CT: A self-controlled study including optimized patient positioning,” Radiography, vol. 31, no. 3, p. 102909, May 2025, doi: 10.1016/j.radi.2025.102909.

[12] P. Wang. “Early detection of Bronchopulmonary Dysplasia (BPD) in preterm infants using doppler ultrasound technology,” SLAS Technology, vol. 31, p. 100249, Apr. 2025, doi: 10.1016/j.slast.2025.100249.

[13] D. Zaidi, I. Talib, M. B. Riaz, Md. N. Alam. “Extending spectral methods to solve time fractional-order Bloch equations using generalized Laguerre polynomials,” Partial Differential Equations in Applied Mathematics, vol. 13, p. 101049, Mar. 2025, doi: 10.1016/j.padiff.2024.101049.

[14] Z. Lin. “Structural design and analysis of 7 T active-shield animal MRI magnet system,” Physica C: Superconductivity and its Applications, vol. 628, p. 1354630, Jan. 2025, doi: 10.1016/j.physc.2024.1354630.

[15] Z. Li. “Study of two contact-less tuning principles for small monolithic radiofrequency MRI coils and development of an automated system based on piezoelectric motor,” Sensors and Actuators A: Physical, vol. 241, pp. 176 – 189, Apr. 2016, doi: 10.1016/j.sna.2016.02.008.

[16] Y. Wang, W. Wang, H. Liu, S. Chen, et al. “Gradient coil design with enhanced shielding constraint for a cryogen-free superconducting MRI system,” Magnetic Resonance Letters, vol. 4, no. 1, p. 100086, Feb. 2024, doi: 10.1016/j.mrl.2023.09.001.

[17] P. E. Grabowski. “Review of the first charged-particle transport coefficient comparison workshop,” High Energy Density Physics, vol. 37, p. 100905, Nov. 2020, doi: 10.1016/j.hedp.2020.100905.

[18] G. Verfaillie, J. Rutten, L. Dewulf, Y. D’Asseler, et al. “Influence of X-ray spectrum and bowtie filter characterization on the accuracy of Monte Carlo simulated organ doses: Validation in a whole-body CT scanning mode,” Physica Medica, vol. 127, p. 104837, Nov. 2024, doi: 10.1016/j.ejmp.2024.104837.

[19] P. A. Cheremkhin, I. A. Shevkunov, and N. V. Petrov. “Multiple-wavelength Color Digital Holography for Monochromatic Image Reconstruction,” Physics Procedia, vol. 73, pp. 301 – 307, 2015, doi: 10.1016/j.phpro.2015.09.142.

[20] D. J. Levine, J. M. Berman, M. Harris, et al. “Sensitivity of Myoma Imaging Using Laparoscopic Ultrasound Compared with Magnetic Resonance Imaging and Transvaginal Ultrasound,” Journal of Minimally Invasive Gynecology, vol. 20, no. 6, pp. 770 – 774, Nov. 2013, doi: 10.1016/j.jmig.2013.04.015.

[21] L. Chen. “Real-time imaging and geometric characterization of laser ultrasound based on array scanning optimization and delay-multiply-and-sum,” Mechanical Systems and Signal Processing, vol. 224, p. 112206, Feb. 2025, doi: 10.1016/j.ymssp.2024.112206.

Downloads

Published

29-07-2025

How to Cite

Song, Z. (2025). Comparative Analysis of MRI, CT, and Ultrasound Imaging Modalities: Technological Advancements and Clinical Applications. Highlights in Science, Engineering and Technology, 149, 82-88. https://doi.org/10.54097/yhgzjq31