Vanishing and Residue of Pontryagin Classes on Singular Foliations
DOI:
https://doi.org/10.54097/qaqcdg95Keywords:
Characteristic classes, singular foliations, manifold topology, higher structures.Abstract
In this paper, we study the vanishing and residue of the Pontryagin classes on singular foliations on smooth manifolds. Specifically, we extend the Bott Vanishing Theorem to singular foliations that admit resolutions by vector bundles, which can be represented by -algebroids, and subsequently prove the Residue Existence Theorem for this type of singular foliations. Our results provide a way of computing the characteristic classes, particularly the Pontryagin classes on smooth manifolds using cohesive modules developed by J. Block. This approach potentially offers a new path in studying the differential geometry and topology of singular foliations beyond the traditional operator algebraic approach.
Downloads
References
[1] C. A. Abad and M. Crainic. “Representations up to homotopy and Bott’s spectral sequence for Lie groupoids”. In: Advances in Mathematics 248 (2009), pp. 416–452.
[2] Camilo Arias Abad and Marius Crainic. Representations up to homotopy of Lie algebroids. 2011. arXiv: 0901.0319 [math.DG].
[3] Camilo Arias Abad and Marius Crainic. In: Journal f ¨ur die reine und angewandte Mathematik (Crelles Journal) 2012.663 (2012), pp. 91–126. DOI: doi: 10.1515/ CRELLE.2011.095. URL: https://doi.org/10.1515/CRELLE.2011.095.
[4] M. F. Atiyah, Nigel J. Hitchin, and I. M. Singer. “Self-duality in Four-Dimensional Riemannian Geometry”. In: Proc. Roy. Soc. Lond. A 362 (1978), pp. 425–461. DOI:10.1098/rspa.1978.0143.
[5] M. Alexandrov et al. “The Geometry of the Master Equation and Topological Quantum Field Theory”. In: International Journal of Modern Physics A 12 (1997), pp. 1405–1429.
[6] Camilo Arias Abad, Santiago Pineda Montoya, and Alexander Quintero Velez.Chern-Weil theory for ∞-local systems. 2021. arXiv: 2105.00461 [math.AT].
[7] M.A. Armstrong. Groups and Symmetry. Undergraduate Texts in Mathematics. Springer New York, 2010. ISBN: 9781441930859.
[8] V.I. Arnold. Ordinary Differential Equations. Springer Textbook. Springer Berlin Heidelberg, 1992. ISBN: 9783540548133.
[9] Paul Baum and Raoul Bott. “Singularities of holomorphic foliations”. In: Journal of differential geometry 7.3-4 (1972), pp. 279–342.
[10] Jonathan Block and Calder Daenzer. Mukai duality for gerbes with connection. 2009. arXiv: 0803.1529 [math.QA]. URL: https://arxiv.org/abs/0803.1529.
[11] Raoul Bott, Samuel Gitler, and Ioan Mackenzie James. Lectures on Algebraic and Differential Topology. Vol. 279. Springer, 1972. ISBN: 978-3-540-05944-8.
[12] J. Block. “Duality and equivalence of module categories in noncommutative geometry”. In: Apr. 2010, pp. 311–339. ISBN: 9780821847770. DOI: 10.1090/ crmp/050/24.
[13] Jonathan Block and Aaron M. Smith. “The higher Riemann–Hilbert correspondence”. In: Advances in Mathematics 252 (2014), pp. 382–405. ISSN: 0001-8708. DOI: https://doi.org/10.1016/j.aim.2013.11.001. URL: https://www. sciencedirect.com/science/article/pii/S0001870813004118.
[14] J. Block and Q. Zeng. “Singular foliations and characteristic classes”. In: In preparation ().
[15] Rui Loja Fernandes. “Lie Algebroids, Holonomy and Characteristic Classes”.In: Advances in Mathematics 170.1 (2002), pp. 119–179. ISSN: 0001-8708. DOI: https://doi.org/10.1006/aima.2001.2070. URL: https://www.sciencedirect. Com/science/article/pii/S0001870801920705.
[16] Sylvain Lavau. Lie ∞-algebroids and singular foliations. 2018. arXiv: 1703.07404 [math.DG].
[17] Madeleine Jotz Lean. Obstructions to representations up to homotopy and ideals. 2019. arXiv: 1905.10237 [math.DG]. URL: https://arxiv.org/abs/1905. 10237.
[18] John M Lee. Smooth manifolds. Springer, 2012.
[19] John M Lee. Introduction to Riemannian manifolds. Vol. 2. Springer, 2018.
[20] C. Laurent-Gengoux, Sylvain Lavau, and T. Strobl. “The universal Lie infinityalgebroid of a singular foliation”. In: Doc. Math. 25 (2020), pp. 1571–1652.
[21] Connor Lazarov and Joel Pasternack. “Residues and characteristic classes for Riemannian foliations”. In: Journal of Differential Geometry 11.4 (1976), pp. 599– 612. DOI: 10.4310/jdg/1214433726. URL: https://doi.org/10.4310/jdg/ 1214433726.
[22] I. Moerdijk and J. Mrcun. Introduction to Foliations and Lie Groupoids. Cambridge Studies in Advanced Mathematics. Cambridge University Press, 2003. ISBN: 9781139438988.
[23] Varghese Mathai and Daniel Quillen. “Superconnections, thom classes, and equivariant differential forms”. In: Topology 25.1 (1986), pp. 85–110. ISSN: 0040- 9383. DOI: https://doi.org/10.1016/0040-9383 (86)90007-8. URL: https: //www.sciencedirect.com/science/article/pii/0040938386900078.
[24] Seiki Nishikawa. “Residues and characteristic classes for projective foliations”. In: Japanese journal of mathematics. New series 7 (1981), pp. 45–108. URL: https: //api.semanticscholar.org/CorpusID:122454121.
[25] J. Nuiten. “Lie algebroids in derived differential topology”. In: 2018.
[26] J. Nuiten. “Homotopical Algebra for Lie Algebroids”. In: Applied Categorical Structures (2019), pp. 1–42.
[27] Daniel Quillen. “Super connections and the Chern character”. In: Topology 24.1 (1985), pp. 89–95. ISSN: 0040-9383. DOI: https://doi.org/10.1016/0040- 9383(85)90047-3. URL: https://www.sciencedirect.com/science/article/ pii/0040938385900473.
[28] Paul A. Schweitzer and Andrew P. Whitman. “Pontryagin polynomial residues of isolated foliation singularities”. In: 1978. URL: https://api.semanticscholar. Org/CorpusID: 117677645.
[29] Andy Zeng. Derived Lie ∞-groupoids and algebroids in higher differential geometry. 2022. arXiv: 2210.05856 [math. DG]. URL: https://arxiv.org/abs/2210. 05856. 22
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Highlights in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







