Virus Like Particle Vaccines Classification Based on Source Virus

Authors

  • Chang Liu

DOI:

https://doi.org/10.54097/6s5qzf94

Keywords:

Virus like particle; vaccine, capsid; envelope; human papillomaviruses.

Abstract

Virus like particle is a self-assembled structure derived from viruses without replicating genome. Thanks to the multiple epitopes at the surface, virus like particles can induce immune response efficiently and thus, being widely used in the vaccination field. Virus like particle vaccination nowadays covers a range of diseases, such as infectious disease, cancer, allergy, and even cancer. In this literature, the author is going to introduce the background and features of virus like particles. Then, the virus like particles are classified based on the classes of virus source. Representatives of commercialized vaccines in different classes are introduced. Discussions are made about the advantages of and the challenges faced by virus like particle fields.

Downloads

Download data is not yet available.

References

[1] Andre, F.E.; Booy, R.; Bock, H.L.; Clemens, J.; Datta, S.K.; John, T.J.; Lee, B.W.; Lolekha, S.; Peltola, H.; Ruff, T.A.; et al. Vaccination greatly reduces disease, disability, death and inequity worldwide. Bull. World Health Organ 2008, 86, 140–146.

[2] Karch, C.P.; Burkhard, P. Vaccine technologies: From whole organisms to rationally designed protein assemblies. Biochem. Pharmacol. 2016, 120, 1–14.

[3] Jenner, E. An Inquiry into the Causes and Effects of the Variole Vaccinae, a Disease Discovered in Some of the Western Counties of England, Particularly Gloucestershire and Known by the Name of the Cow-Pox; Sampson Low: London, UK, 1798.

[4] Plotkin, S. History of vaccination. Proc. Natl. Acad. Sci. USA 2014, 111, 12283–12287.

[5] Plotkin, S.A. Vaccines: Past, present and future. Nat. Med. 2005, 11, S5–S11.

[6] Hilleman, M.R.; McAleer, W.J.; Buynak, E.B.; McLean, A.A. The preparation and safety of hepatitis B vaccine. J. Infect. 1983, 7 (Suppl. 1), 3–8.

[7] Lowy, D.R.; Schiller, J.T. Prophylactic human papillomavirus vaccines. J. Clin. Investig. 2006, 116, 1167–1173.

[8] Valenzuela, P.; Coit, D.; Medina-Selby, M.A.; Kuo, C.H.; Van Nest, G.; Lyn Burke, R.; Bull, P.; Urdea, M.S.; Graves, P.V. Antigen Engineering in Yeast: Synthesis and Assembly of Hybrid Hepatitis B Surface Antigen-Herpes Simplex 1 gD Particles. Bio/Technology 1985, 3, 323–326.

[9] Benne, N.; van Duijn, J.; Kuiper, J.; Jiskoot, W.; Slutter, B. Orchestrating immune responses: How size, shape and rigidity affect the immunogenicity of particulate vaccines. J. Control Release 2016, 234, 124–134.

[10] Mohsen, M. O., Speiser, D. E., Knuth, A., & Bachmann, M. F. Virus‐like particles for vaccination against cancer. WIREs Nanomedicine and Nanobiotechnology, 2019 ,12(1).

[11] Chackerian, B.; Durfee, M.R.; Schiller, J.T. Virus-like display of a neo-self antigen reverses B cell anergy in a B cell receptor transgenic mouse model. J. Immunol. 2008, 180, 5816–5825.

[12] Deng, F. Advances and Challenges in Enveloped Virus-like Particle (VLP)-Based Vaccines. J. Immunol. Sci. 2018, 2, 36–41.

[13] Nooraei, S.; Bahrulolum, H.; Hoseini, Z.S.; Katalani, C.; Hajizade, A.; Easton, A.J.; Ahmadian, G. Virus-like Particles: Preparation, Immunogenicity and Their Roles as Nanovaccines and Drug Nanocarriers. J. Nanobiotechnol. 2021, 19, 59.

[14] Tariq, H.; Batool, S.; Asif, S.; Ali, M.; Abbasi, B.H. Virus-Like Particles: Revolutionary Platforms for Developing Vaccines Against Emerging Infectious Diseases. Front. Microbiol. 2022, 12, 790121.

[15] Pacios, L.F.; Sánchez, F.; Ponz, F. Intrinsic Disorder in the Dynamic Evolution of Structure, Stability, and Flexibility of Potyviral VLP Assemblies: A Computational Study. Int. J. Biol. Macromol. 2024, 254, 127798.

[16] Balke, I.; Zeltins, A. Use of plant viruses and virus-like particles for the creation of novel vaccines. Adv. Drug Deliv. Rev. 2019, 145, 119–129.

[17] Zeltins, A. Protein Complexes and Virus-Like Particle Technology. Subcell Biochem. 2018, 88, 379–405.

[18] Balke, I., & Zeltins, A. Recent advances in the use of plant virus-like particles as vaccines. Viruses, 2020, 12(3), 270.

[19] Zeltins, A.; West, J.; Zabel, F.; El Turabi, A.; Balke, I.; Haas, S.; Maudrich, M.; Storni, F.; Engeroff, P.; Jennings, G.T.; et al. Incorporation of tetanus-epitope into virus-like particles achieves vaccine responses even in older recipients in models of psoriasis, Alzheimer’s and cat allergy. NPJ Vaccines 2017, 2, 30.

[20] Vitti, A.; Piazzolla, G.; Condelli, V.; Nuzzaci, M.; Lanorte, M.T.; Boscia, D.; De Stradis, A.; Antonaci, S.; Piazzolla, P.; Tortorella, C. Cucumber mosaic virus as the expression system for a potential vaccine against Alzheimer’s disease. J. Virol. Methods 2010, 169, 332–340.

[21] Pumpens, P.; Pushko, P. Virus-like Particles: A Comprehensive Guide; CRC Press: Boca Raton, FL, USA, 2022.

[22] Moradi Vahdat, M.; Hemmati, F.; Ghorbani, A.; Rutkowska, D.; Afsharifar, A.; Eskandari, M.H.; Rezaei, N.; Niazi, A. Hepatitis B core-based virus-like particles: A platform for vaccine development in plants. Biotechnol. Rep. 2021, 29, e00605.

[23] Chroboczek, J.; Szurgot, I.; Szolajska, E. Virus-like particles as vaccine. Acta Biochim. Pol. 2014, 61, 531–539.

[24] Hamada-Tsutsumi, S.; Iio, E.; Watanabe, T.; Murakami, S.; Isogawa, M.; Iijima, S.; Inoue, T.; Matsunami, K.; Tajiri, K.; Ozawa, T.; et al. Validation of cross-genotype neutralization by hepatitis B virus-specific monoclonal antibodies by in vitro and in vivo infection. PLoS ONE 2015, 10, e0118062.

[25] Joura, E.A.; Giuliano, A.R.; Iversen, O.E.; Bouchard, C.; Mao, C.; Mehlsen, J.; Moreira, E.D., Jr.; Ngan, Y.; Petersen, L.K.; LazcanoPonce, E.; et al. A 9-valent HPV vaccine against infection and intraepithelial neoplasia in women. N. Engl. J. Med. 2015, 372, 711–723.

[26] Zhai, L.; Tumban, E. Gardasil-9: A global survey of projected efficacy. Antivir. Res. 2016, 130, 101–109.

[27] Kjaer, S.K.; Nygard, M.; Sundstrom, K.; Dillner, J.; Tryggvadottir, L.; Munk, C.; Berger, S.; Enerly, E.; Hortlund, M.; Agustsson, A.I.; et al. Final analysis of a 14-year long-term follow-up study of the effectiveness and immunogenicity of the quadrivalent human papillomavirus vaccine in women from four nordic countries. Eclinicalmedicine 2020, 23, 100401.

[28] A Phase I Safty and Immunogenicity Study of SCT1000 in Healthy Women Aged 18 to 45 Years.

[29] Penkert, R.R.; Young, N.S.; Surman, S.L.; Sealy, R.E.; Rosch, J.; Dormitzer, P.R.; Settembre, E.C.; Chandramouli, S.; Wong, S.; Hankins, J.S. Saccharomyces cerevisiae-derived virus-like particle parvovirus B19 vaccine elicits binding and neutralizing antibodies in a mouse model for sickle cell disease. Vaccine 2017, 35, 3615–3620.

[30] Buonaguro, L.; Racioppi, L.; Tornesello, M.; Arra, C.; Visciano, M.; Biryahwaho, B.; Sempala, S.; Giraldo, G.; Buonaguro, F. Induction of neutralizing antibodies and cytotoxic T lymphocytes in Balb/c mice immunized with virus-like particles presenting a gp120 molecule from a HIV-1 isolate of clade A. Antivir. Res. 2002, 54, 189–201.

[31] Vang, L.; Morello, C.S.; Mendy, J.; Thompson, D.; Manayani, D.; Guenther, B.; Julander, J.; Sanford, D.; Jain, A.; Patel, A. Zika virus-like particle vaccine protects AG129 mice and rhesus macaques against Zika virus. PLoS Negl. Trop. Dis. 2021, 15, e0009195.

[32] Gunter, C.J.; Regnard, G.L.; Rybicki, E.P.; Hitzeroth, I.I. Immunogenicity of plant-produced porcine circovirus-like particles in mice. Plant Biotechnol. J. 2019, 17, 1751–1759.

[33] Lee, D.-H.; Bae, S.-W.; Park, J.-K.; Kwon, J.-H.; Yuk, S.-S.; Song, J.-M.; Kang, S.-M.; Kwon, Y.-K.; Kim, H.-Y.; Song, C.-S. Virus-like particle vaccine protects against H3N2 canine influenza virus in dog. Vaccine 2013, 31, 3268–3273.

[34] Smith, T.; O’Kennedy, M.M.; Wandrag, D.B.R.; Adeyemi, M.; Abolnik, C. Efficacy of a plant-produced virus-like particle vaccine in chickens challenged with Influenza A H6N2 virus. Plant Biotechnol. J. 2020, 18, 502–512.

[35] Nakahira, Y.; Mizuno, K.; Yamashita, H.; Tsuchikura, M.; Takeuchi, K.; Shiina, T.; Kawakami, H. Mass Production of Virus-Like Particles Using Chloroplast Genetic Engineering for Highly Immunogenic Oral Vaccine against Fish Disease. Front. Plant Sci. 2021, 12, 717952.

[36] Pascual, E.; Mata, C.P.; Gómez-Blanco, J.; Moreno, N.; Bárcena, J.; Blanco, E.; Rodríguez-Frandsen, A.; Nieto, A.; Carrascosa, J.L.; Castón, J.R. Structural basis for the development of avian virus capsids that display influenza virus proteins and induce protective immunity. J. Virol. 2015, 89, 2563–2574.

[37] Tumban, E.; Peabody, J.; Peabody, D.S.; Chackerian, B. A universal virus-like particle-based vaccine for human papillomavirus: Longevity of protection and role of endogenous and exogenous adjuvants. Vaccine 2013, 31, 4647–4654.

[38] Kim, N.; Lee, T.-Y.; Lee, H.; Yang, J.-S.; Kim, K.-C.; Lee, J.-Y.; Kim, H.-J. Comparing the Immunogenicity and Protective Effects of Three MERS-CoV Inactivation Methods in Mice. Vaccines 2022, 10, 1843.

[39] Fontana, D.; Kratje, R.; Etcheverrigaray, M.; Prieto, C. Rabies virus-like particles expressed in HEK293 cells. Vaccine 2014, 32, 2799–2804.

[40] Wen, J.; Behloul, N.; Dai, X.; Dong, C.; Liang, J.; Zhang, M.; Shi, C.; Meng, J. Immunogenicity difference between two hepatitis E vaccines derived from genotype 1 and 4. Antivir. Res. 2016, 128, 36–42.

Downloads

Published

18-02-2025

How to Cite

Liu, C. (2025). Virus Like Particle Vaccines Classification Based on Source Virus. Highlights in Science, Engineering and Technology, 125, 257-263. https://doi.org/10.54097/6s5qzf94