MicroRNA Regulation in Rheumatoid Arthritis: Improving Tocilizumab-Based Treatment
DOI:
https://doi.org/10.54097/ha2j8906Keywords:
Rheumatoid Arthritis, miRNA, Tocilizumab.Abstract
Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by persistent joint inflammation, pain, swelling, and progressive joint damage. miRNAs, small non-coding RNAs, play critical roles in immune regulation, and their dysregulation contributes to RA development. miRNAs are promising therapeutic targets in RA due to their broad effects and stage-specific regulatory roles. Tocilizumab (TCZ), a biological DMARD targeting the IL-6 receptor, has shown good clinical outcomes and plays a role in modulating miRNA expression, offering new insights into RA pathogenesis and treatment response. Recent studies suggest that miRNA-based therapies could modulate miRNA profiles to reduce inflammation and tissue damage. This paper explores TCZ’s role in miRNA regulation in RA, focusing on the modulation of miR-146a-5p and miR-150-5p and their effects on angiogenesis and inflammation. However, gaps remain in understanding the mechanisms through which miRNAs influence RA outcomes, the optimal delivery methods for miRNA therapies, and the long-term effects of TCZ on miRNA profiles. Further research is needed to optimize miRNA-based therapies, particularly in combination with TCZ and other conventional DMARDs, to enhance efficacy in RA treatment.
Downloads
References
[1] Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatology international, 41 (5), 863–877.
[2] Gabriel S. E. (2001). The epidemiology of rheumatoid arthritis. Rheumatic diseases clinics of North America, 27 (2), 269–281.
[3] Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5), 843–854.
[4] Calin, G. A. et al. Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. 99, 15524–15529 (2002).
[5] Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., Yang, H., Bai, J., & Geng, D. (2023). Comprehensive overview of microRNA function in rheumatoid arthritis. Bone research, 11 (1), 8.
[6] Kim, T., & Croce, C. M. (2023). MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Experimental & Molecular Medicine, 55, 1314–1321.
[7] Furer, V., Greenberg, J. D., Attur, M., Abramson, S. B., & Pillinger, M. H. (2010). The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clinical immunology (Orlando, Fla.), 136 (1), 1–15.
[8] Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (Actemra). Human vaccines & immunotherapeutics, 13 (9), 1972–1988.
[9] Kaneko A. (2013). Tocilizumab in rheumatoid arthritis: efficacy, safety and its place in therapy. Therapeutic advances in chronic disease, 4 (1), 15–21.
[10] Rose-John S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International journal of biological sciences, 8 (9), 1237–1247.
[11] Hashizume, M., Hayakawa, N., Suzuki, M., & Mihara, M. (2009). IL-6/sIL-6R trans-signalling, but not TNF-alpha induced angiogenesis in a HUVEC and synovial cell co-culture system. Rheumatology international, 29 (12), 1449–1454.
[12] Rose-John S. Interleukin-6 Signalling in Health and Disease [Version 1; Peer Review: 3 Approved]. F1000Research (2020) 9:1013 (11 pages).
[13] Wang, M., Chen, L., He, J., Xia, W., Ye, Z., & She, J. (2024). Structural insights into IL-6 signaling inhibition by therapeutic antibodies. Cell reports, 43 (3), 113819.
[14] De la Rosa, I. A., Perez-Sanchez, C., Ruiz-Limon, P., Patiño-Trives, A., Torres Granados, C., Jimenez-Gomez, Y., Del Carmen Abalos-Aguilera, M., Cecchi, I., Ortega, R., Caracuel, M. A., Calvo-Gutierrez, J., Escudero-Contreras, A., Collantes-Estevez, E., Lopez-Pedrera, C., & Barbarroja, N. (2020). Impaired microRNA processing in neutrophils from rheumatoid arthritis patients confers their pathogenic profile. Modulation by biological therapies. Haematologica, 105 (9), 2250–2261.
[15] Zisman, D., Safieh, M., Simanovich, E., Feld, J., Kinarty, A., Zisman, L., Gazitt, T., Haddad, A., Elias, M., Rosner, I., Kaly, L., & Rahat, M. A. (2021). Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Frontiers in immunology, 12, 739592.
[16] Doghish, A. S., Ismail, A., El-Mahdy, H. A., Elkhawaga, S. Y., Elsakka, E. G. E., Mady, E. A., Elrebehy, M. A., Khalil, M. A. F., & El-Husseiny, H. M. (2023). miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life sciences, 314, 121321.
[17] Iwamoto, N., Furukawa, K., Endo, Y., Shimizu, T., Sumiyoshi, R., Umeda, M., Koga, T., Kawashiri, S. Y., Igawa, T., Ichinose, K., Tamai, M., Origuchi, T., & Kawakami, A. (2021). Methotrexate Alters the Expression of microRNA in Fibroblast-like Synovial Cells in Rheumatoid Arthritis. International journal of molecular sciences, 22 (21), 11561.
[18] Wu, J., Fan, W., Ma, L., & Geng, X. (2018). miR-708-5p promotes fibroblast-like synoviocytes' cell apoptosis and ameliorates rheumatoid arthritis by the inhibition of Wnt3a/β-catenin pathway. Drug design, development and therapy, 12, 3439–3447.
[19] Chen, Y., Wang, X., Yang, M., Ruan, W., Wei, W., Gu, D., Wang, J., Guo, X., Guo, L., & Yuan, Y. (2018). miR-145-5p Increases Osteoclast Numbers In Vitro and Aggravates Bone Erosion in Collagen-Induced Arthritis by Targeting Osteoprotegerin. Medical science monitor: international medical journal of experimental and clinical research, 24, 5292–5300.
[20] Donate, P. B., Alves de Lima, K., Peres, R. S., Almeida, F., Fukada, S. Y., Silva, T. A., Nascimento, D. C., Cecilio, N. T., Talbot, J., Oliveira, R. D., Passos, G. A., Alves-Filho, J. C., Cunha, T. M., Louzada-Junior, P., Liew, F. Y., & Cunha, F. Q. (2021). Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America, 118 (1), e2017120118.
[21] Wang, J., Wang, Y., Zhang, H., Chang, J., Lu, M., Gao, W., Liu, W., Li, Y., Yin, L., Wang, X., Wang, Y., Gao, M., & Yin, Z. (2020). Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics, 10 (12), 5412–5434.
[22] Wu, L. F., Zhang, Q., Mo, X. B., Lin, J., Wu, Y. L., Lu, X., He, P., Wu, J., Guo, Y. F., Wang, M. J., Ren, W. Y., Deng, H. W., Lei, S. F., & Deng, F. Y. (2022). Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Experimental & molecular medicine, 54 (3), 334–345.
[23] Peng, J. S., Chen, S. Y., Wu, C. L., Chong, H. E., Ding, Y. C., Shiau, A. L., & Wang, C. R. (2016). Amelioration of Experimental Autoimmune Arthritis Through Targeting of Synovial Fibroblasts by Intraarticular Delivery of MicroRNAs 140-3p and 140-5p. Arthritis & rheumatology (Hoboken, N.J.), 68 (2), 370–381.
[24] Li, G. Q., Fang, Y. X., Liu, Y., Meng, F. R., Wu, X., Zhang, C. W., Zhang, Y., Liu, Y. Q., & Liu, D. (2021). MicroRNA-21 from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate rheumatoid arthritis. Therapeutic advances in chronic disease, 12, 20406223211007369.
[25] Huang, Y., Lu, D., Ma, W., Liu, J., Ning, Q., Tang, F., & Li, L. (2022). miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Molecular immunology, 143, 68–76.
[26] Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of controlled release: official journal of the Controlled Release Society, 114 (1), 100–109.
[27] Sujitha, S., Dinesh, P., & Rasool, M. (2020). Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 149, 170–191.
[28] Yu, C., Zhang, X., Sun, X., Long, C., Sun, F., Liu, J., Li, X., Lee, R. J., Liu, N., Li, Y., & Teng, L. (2018). Ketoprofen and MicroRNA-124 Co-loaded poly (lactic-co-glycolic acid) microspheres inhibit progression of Adjuvant-induced arthritis in rats. International journal of pharmaceutics, 552 (1-2), 148–153.
[29] Zhao, M., Yao, J., Meng, X., Cui, Y., Zhu, T., Sun, F., Li, Y., & Teng, L. (2021). Polyketal Nanoparticles Co-Loaded With miR-124 and Ketoprofen for Treatment of Rheumatoid Arthritis. Journal of pharmaceutical sciences, 110 (5), 2233–2240.
[30] Zhang, X., Zhang, X., Wang, X., Wang, T., Bai, B., Zhang, N., Zhao, Y., Yu, Y., & Wang, B. (2020). Efficient Delivery of Triptolide Plus a miR-30-5p Inhibitor Through the Use of Near Infrared Laser Responsive or CADY Modified MSNs for Efficacy in Rheumatoid Arthritis Therapeutics. Frontiers in bioengineering and biotechnology, 8, 170.
Downloads
Published
Issue
Section
License
Copyright (c) 2025 Highlights in Science, Engineering and Technology

This work is licensed under a Creative Commons Attribution-NonCommercial 4.0 International License.







