MicroRNA Regulation in Rheumatoid Arthritis: Improving Tocilizumab-Based Treatment

Authors

  • Qianqi Li

DOI:

https://doi.org/10.54097/ha2j8906

Keywords:

Rheumatoid Arthritis, miRNA, Tocilizumab.

Abstract

Rheumatoid arthritis (RA) is a chronic inflammatory disease characterised by persistent joint inflammation, pain, swelling, and progressive joint damage. miRNAs, small non-coding RNAs, play critical roles in immune regulation, and their dysregulation contributes to RA development. miRNAs are promising therapeutic targets in RA due to their broad effects and stage-specific regulatory roles. Tocilizumab (TCZ), a biological DMARD targeting the IL-6 receptor, has shown good clinical outcomes and plays a role in modulating miRNA expression, offering new insights into RA pathogenesis and treatment response. Recent studies suggest that miRNA-based therapies could modulate miRNA profiles to reduce inflammation and tissue damage. This paper explores TCZ’s role in miRNA regulation in RA, focusing on the modulation of miR-146a-5p and miR-150-5p and their effects on angiogenesis and inflammation. However, gaps remain in understanding the mechanisms through which miRNAs influence RA outcomes, the optimal delivery methods for miRNA therapies, and the long-term effects of TCZ on miRNA profiles. Further research is needed to optimize miRNA-based therapies, particularly in combination with TCZ and other conventional DMARDs, to enhance efficacy in RA treatment.

Downloads

Download data is not yet available.

References

[1] Almutairi, K., Nossent, J., Preen, D., Keen, H., & Inderjeeth, C. (2021). The global prevalence of rheumatoid arthritis: a meta-analysis based on a systematic review. Rheumatology international, 41 (5), 863–877.

[2] Gabriel S. E. (2001). The epidemiology of rheumatoid arthritis. Rheumatic diseases clinics of North America, 27 (2), 269–281.

[3] Lee, R. C., Feinbaum, R. L., & Ambros, V. (1993). The C. elegans heterochronic gene lin-4 encodes small RNAs with antisense complementarity to lin-14. Cell, 75 (5), 843–854.

[4] Calin, G. A. et al. Nonlinear partial differential equations and applications: Frequent deletions and down-regulation of micro- RNA genes miR15 and miR16 at 13q14 in chronic lymphocytic leukemia. Proc. Natl Acad. Sci. 99, 15524–15529 (2002).

[5] Peng, X., Wang, Q., Li, W., Ge, G., Peng, J., Xu, Y., Yang, H., Bai, J., & Geng, D. (2023). Comprehensive overview of microRNA function in rheumatoid arthritis. Bone research, 11 (1), 8.

[6] Kim, T., & Croce, C. M. (2023). MicroRNA: Trends in clinical trials of cancer diagnosis and therapy strategies. Experimental & Molecular Medicine, 55, 1314–1321.

[7] Furer, V., Greenberg, J. D., Attur, M., Abramson, S. B., & Pillinger, M. H. (2010). The role of microRNA in rheumatoid arthritis and other autoimmune diseases. Clinical immunology (Orlando, Fla.), 136 (1), 1–15.

[8] Sheppard, M., Laskou, F., Stapleton, P. P., Hadavi, S., & Dasgupta, B. (2017). Tocilizumab (Actemra). Human vaccines & immunotherapeutics, 13 (9), 1972–1988.

[9] Kaneko A. (2013). Tocilizumab in rheumatoid arthritis: efficacy, safety and its place in therapy. Therapeutic advances in chronic disease, 4 (1), 15–21.

[10] Rose-John S. (2012). IL-6 trans-signaling via the soluble IL-6 receptor: importance for the pro-inflammatory activities of IL-6. International journal of biological sciences, 8 (9), 1237–1247.

[11] Hashizume, M., Hayakawa, N., Suzuki, M., & Mihara, M. (2009). IL-6/sIL-6R trans-signalling, but not TNF-alpha induced angiogenesis in a HUVEC and synovial cell co-culture system. Rheumatology international, 29 (12), 1449–1454.

[12] Rose-John S. Interleukin-6 Signalling in Health and Disease [Version 1; Peer Review: 3 Approved]. F1000Research (2020) 9:1013 (11 pages).

[13] Wang, M., Chen, L., He, J., Xia, W., Ye, Z., & She, J. (2024). Structural insights into IL-6 signaling inhibition by therapeutic antibodies. Cell reports, 43 (3), 113819.

[14] De la Rosa, I. A., Perez-Sanchez, C., Ruiz-Limon, P., Patiño-Trives, A., Torres Granados, C., Jimenez-Gomez, Y., Del Carmen Abalos-Aguilera, M., Cecchi, I., Ortega, R., Caracuel, M. A., Calvo-Gutierrez, J., Escudero-Contreras, A., Collantes-Estevez, E., Lopez-Pedrera, C., & Barbarroja, N. (2020). Impaired microRNA processing in neutrophils from rheumatoid arthritis patients confers their pathogenic profile. Modulation by biological therapies. Haematologica, 105 (9), 2250–2261.

[15] Zisman, D., Safieh, M., Simanovich, E., Feld, J., Kinarty, A., Zisman, L., Gazitt, T., Haddad, A., Elias, M., Rosner, I., Kaly, L., & Rahat, M. A. (2021). Tocilizumab (TCZ) Decreases Angiogenesis in Rheumatoid Arthritis Through Its Regulatory Effect on miR-146a-5p and EMMPRIN/CD147. Frontiers in immunology, 12, 739592.

[16] Doghish, A. S., Ismail, A., El-Mahdy, H. A., Elkhawaga, S. Y., Elsakka, E. G. E., Mady, E. A., Elrebehy, M. A., Khalil, M. A. F., & El-Husseiny, H. M. (2023). miRNAs insights into rheumatoid arthritis: Favorable and detrimental aspects of key performers. Life sciences, 314, 121321.

[17] Iwamoto, N., Furukawa, K., Endo, Y., Shimizu, T., Sumiyoshi, R., Umeda, M., Koga, T., Kawashiri, S. Y., Igawa, T., Ichinose, K., Tamai, M., Origuchi, T., & Kawakami, A. (2021). Methotrexate Alters the Expression of microRNA in Fibroblast-like Synovial Cells in Rheumatoid Arthritis. International journal of molecular sciences, 22 (21), 11561.

[18] Wu, J., Fan, W., Ma, L., & Geng, X. (2018). miR-708-5p promotes fibroblast-like synoviocytes' cell apoptosis and ameliorates rheumatoid arthritis by the inhibition of Wnt3a/β-catenin pathway. Drug design, development and therapy, 12, 3439–3447.

[19] Chen, Y., Wang, X., Yang, M., Ruan, W., Wei, W., Gu, D., Wang, J., Guo, X., Guo, L., & Yuan, Y. (2018). miR-145-5p Increases Osteoclast Numbers In Vitro and Aggravates Bone Erosion in Collagen-Induced Arthritis by Targeting Osteoprotegerin. Medical science monitor: international medical journal of experimental and clinical research, 24, 5292–5300.

[20] Donate, P. B., Alves de Lima, K., Peres, R. S., Almeida, F., Fukada, S. Y., Silva, T. A., Nascimento, D. C., Cecilio, N. T., Talbot, J., Oliveira, R. D., Passos, G. A., Alves-Filho, J. C., Cunha, T. M., Louzada-Junior, P., Liew, F. Y., & Cunha, F. Q. (2021). Cigarette smoke induces miR-132 in Th17 cells that enhance osteoclastogenesis in inflammatory arthritis. Proceedings of the National Academy of Sciences of the United States of America, 118 (1), e2017120118.

[21] Wang, J., Wang, Y., Zhang, H., Chang, J., Lu, M., Gao, W., Liu, W., Li, Y., Yin, L., Wang, X., Wang, Y., Gao, M., & Yin, Z. (2020). Identification of a novel microRNA-141-3p/Forkhead box C1/β-catenin axis associated with rheumatoid arthritis synovial fibroblast function in vivo and in vitro. Theranostics, 10 (12), 5412–5434.

[22] Wu, L. F., Zhang, Q., Mo, X. B., Lin, J., Wu, Y. L., Lu, X., He, P., Wu, J., Guo, Y. F., Wang, M. J., Ren, W. Y., Deng, H. W., Lei, S. F., & Deng, F. Y. (2022). Identification of novel rheumatoid arthritis-associated MiRNA-204-5p from plasma exosomes. Experimental & molecular medicine, 54 (3), 334–345.

[23] Peng, J. S., Chen, S. Y., Wu, C. L., Chong, H. E., Ding, Y. C., Shiau, A. L., & Wang, C. R. (2016). Amelioration of Experimental Autoimmune Arthritis Through Targeting of Synovial Fibroblasts by Intraarticular Delivery of MicroRNAs 140-3p and 140-5p. Arthritis & rheumatology (Hoboken, N.J.), 68 (2), 370–381.

[24] Li, G. Q., Fang, Y. X., Liu, Y., Meng, F. R., Wu, X., Zhang, C. W., Zhang, Y., Liu, Y. Q., & Liu, D. (2021). MicroRNA-21 from bone marrow mesenchymal stem cell-derived extracellular vesicles targets TET1 to suppress KLF4 and alleviate rheumatoid arthritis. Therapeutic advances in chronic disease, 12, 20406223211007369.

[25] Huang, Y., Lu, D., Ma, W., Liu, J., Ning, Q., Tang, F., & Li, L. (2022). miR-223 in exosomes from bone marrow mesenchymal stem cells ameliorates rheumatoid arthritis via downregulation of NLRP3 expression in macrophages. Molecular immunology, 143, 68–76.

[26] Lv, H., Zhang, S., Wang, B., Cui, S., & Yan, J. (2006). Toxicity of cationic lipids and cationic polymers in gene delivery. Journal of controlled release: official journal of the Controlled Release Society, 114 (1), 100–109.

[27] Sujitha, S., Dinesh, P., & Rasool, M. (2020). Berberine encapsulated PEG-coated liposomes attenuate Wnt1/β-catenin signaling in rheumatoid arthritis via miR-23a activation. European journal of pharmaceutics and biopharmaceutics: official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V, 149, 170–191.

[28] Yu, C., Zhang, X., Sun, X., Long, C., Sun, F., Liu, J., Li, X., Lee, R. J., Liu, N., Li, Y., & Teng, L. (2018). Ketoprofen and MicroRNA-124 Co-loaded poly (lactic-co-glycolic acid) microspheres inhibit progression of Adjuvant-induced arthritis in rats. International journal of pharmaceutics, 552 (1-2), 148–153.

[29] Zhao, M., Yao, J., Meng, X., Cui, Y., Zhu, T., Sun, F., Li, Y., & Teng, L. (2021). Polyketal Nanoparticles Co-Loaded With miR-124 and Ketoprofen for Treatment of Rheumatoid Arthritis. Journal of pharmaceutical sciences, 110 (5), 2233–2240.

[30] Zhang, X., Zhang, X., Wang, X., Wang, T., Bai, B., Zhang, N., Zhao, Y., Yu, Y., & Wang, B. (2020). Efficient Delivery of Triptolide Plus a miR-30-5p Inhibitor Through the Use of Near Infrared Laser Responsive or CADY Modified MSNs for Efficacy in Rheumatoid Arthritis Therapeutics. Frontiers in bioengineering and biotechnology, 8, 170.

Downloads

Published

27-06-2025

How to Cite

Li, Q. (2025). MicroRNA Regulation in Rheumatoid Arthritis: Improving Tocilizumab-Based Treatment. Highlights in Science, Engineering and Technology, 144, 124-131. https://doi.org/10.54097/ha2j8906