Physico-Chemical Doubly Confinement and Chloride Ion Activation Enabled Two-Electron Conversion Zn-I2 Battery

Authors

  • Wenting Feng
  • Xinru Wei
  • Junwei Han
  • Chenyu Ma
  • Yiming Sun
  • Peicai Li
  • Debin Kong
  • Linjie Zhi

DOI:

https://doi.org/10.54097/z1pgtb19

Keywords:

Zn-I2 battery, porous carbon, physico-chemical adsorption, halogen ion, activation.

Abstract

Aqueous zinc-iodine (Zn-I2) batteries are emerging as promising alternatives to lithium-ion batteries, boasting high theoretical capacity along with abundant natural resources and environmental safety. The redox chemistry of iodine in these batteries, exploiting its multiple valence states, offers potential for intricate multi-electron conversion reactions. However, challenges such as iodine's volatility and poor conductivity hinder direct use as a cathode material, impacting battery efficiency and cycle life. Strategies involving physico-chemical adsorption in carbon-based hosts show promise by enhancing iodine loading and stability. A synthesized porous carbon material, enriched with carbonate functional groups, achieved a remarkable iodine loading efficiency of 66.69 wt.%. When applied as the cathode in a Zn-I2&Cl battery configuration, incorporating two-electron conversion of iodine via chloride ions activation, it demonstrated a specific capacity exceeding 200mAh g-1 at 1C, with stable cycling performance over 600 cycles at 5C. This approach underscores the critical role of tailored cathode materials in advancing Zn-I2 battery technology.

Downloads

Download data is not yet available.

References

[1] Jin, X.; Song, L.; Dai, C.; Xiao, Y.; Han, Y.; Li, X.; Wang, Y.; Zhang, J.; Zhao, Y.; Zhang, Z.; Chen, N.; Jiang, L.; Qu, L., A Flexible Aqueous Zinc-Iodine Microbattery with Unprecedented Energy Density. Adv. Mater. 2022, 34, e2109450.

[2] Chen, H.; Li, X.; Fang, K.; Wang, H.; Ning, J.; Hu, Y., Aqueous Zinc‐Iodine Batteries: From Electrochemistry to Energy Storage Mechanism. Adv. Energy Mater. 2023, 13, 2302187.

[3] Li, W.; Wang, D., Conversion‐Type Cathode Materials for Aqueous Zn Metal Batteries in Nonalkaline Aqueous Electrolytes: Progress, Challenges, and Solutions. Adv. Mater. 2023, 2304983.

[4] Huang, L.; Li, W.; Wei, F.; Ke, S.; Chen, H.; Jing, C.; Cheng, J.; Liu, S., Hierarchical porous covalent organic framework nanosheets with adjustable large mesopores. Chem. 2024, 10, 1-14.

[5] Zhu, L.; Guan, X.; Fu, Y.; Zhang, Z.; Li, Y.; Mai, Q.; Zhang, C.; Yuan, Z.; Wang, Y.; Li, P.; Li, H.; Su, D.; Jia, B.; Yu, H.; Sun, Y.; Ma, T., Integrated Trap‐Adsorption‐Catalysis Nanoreactor for Shuttle‐Free Aqueous Zinc‐Iodide Batteries. Adv. Funct. Mater. 2024, 2409099.

[6] Hu, Z.; Wang, X.; Du, W.; Zhang, Z.; Tang, Y.; Ye, M.; Zhang, Y.; Liu, X.; Wen, Z.; Li, C. C., Crowding Effect-Induced Zinc-Enriched/Water-Lean Polymer Interfacial Layer Toward Practical Zn-Iodine Batteries. ACS Nano 2023, 17, 23207-23219.

[7] Zou, Y.; Liu, T.; Du, Q.; Li, Y.; Yi, H.; Zhou, X.; Li, Z.; Gao, L.; Zhang, L.; Liang, X., A four-electron Zn-I2 aqueous battery enabled by reversible I-/I2/I+ conversion. Nat. Commun. 2021, 12, 170.

[8] Li, P.; Li, X.; Guo, Y.; Li, C.; Hou, Y.; Cui, H.; Zhang, R.; Huang, Z.; Zhao, Y.; Li, Q.; Dong, B.; Zhi, C., Highly Thermally/Electrochemically Stable I−/I3− Bonded Organic Salts with High I Content for Long‐Life Li–I2 Batteries. Adv. Energy Mater. 2022, 12, 2103648.

[9] Wang, K.; Li, H.; Xu, Z.; Liu, Y.; Ge, M.; Wang, H.; Zhang, H.; Lu, Y.; Liu, J.; Zhang, Y.; Tang, Y.; Chen, S., An Iodine‐Chemisorption Binder for High‐Loading and Shuttle‐Free Zn–Iodine Batteries. Adv. Energy Mater. 2024, 14, 2304110.

[10] Yang, J.-L.; Liu, H.-H.; Zhao, X.-X.; Zhang, X.-Y.; Zhang, K.-Y.; Ma, M.-Y.; Gu, Z.-Y.; Cao, J.-M.; Wu, X.-L., Janus Binder Chemistry for Synchronous Enhancement of Iodine Species Adsorption and Redox Kinetics toward Sustainable Aqueous Zn–I2 Batteries. J. Am. Chem. Soc. 2024, 146, 6628-6637.

[11] Bi, S.; Wang, H.; Zhang, Y.; Yang, M.; Li, Q.; Tian, J.; Niu, Z., Six‐Electron‐Redox Iodine Electrodes for High‐Energy Aqueous Batteries. Angew. Chem. Int. Ed. 2023, 62, e202312982.

[12] Li, X.; Wang, Y.; Chen, Z.; Li, P.; Liang, G.; Huang, Z.; Yang, Q.; Chen, A.; Cui, H.; Dong, B.; He, H.; Zhi, C., Two-Electron Redox Chemistry Enabled High-Performance Iodide-Ion Conversion Battery. Angew. Chem. Int. Ed. 2022, 61, e202113576.

[13] Li, Z.; Cao, W.; Hu, T.; Hu, Y.; Zhang, R.; Cui, H.; Mo, F.; Liu, C.; Zhi, C.; Liang, G., Deploying Cationic Cellulose Nanofiber Confinement to Enable High Iodine Loadings Towards High Energy and High‐Temperature Zn‐I2 Battery. Angew. Chem. Int. Ed. 2023, 63, e202317652.

[14] Chen, Z.; Wang, F.; Ma, R.; Jiao, W.; Li, D.; Du, A.; Yan, Z.; Yin, T.; Yin, X.; Li, Q.; Zhang, X.; Yang, N.; Zhou, Z.; Yang, Q.-H.; Yang, C., Molecular Catalysis Enables Fast Polyiodide Conversion for Exceptionally Long-Life Zinc–Iodine Batteries. ACS Energy Lett. 2024, 9, 2858-2866.

[15] He, J.; Mu, Y.; Wu, B.; Wu, F.; Liao, R.; Li, H.; Zhao, T.; Zeng, L., Synergistic effects of Lewis acid–base and Coulombic interactions for high-performance Zn–I2 batteries. Energy Environ. Sci. 2024, 17, 323-331.

[16] He, J.; Hong, H.; Hu, S.; Zhao, X.; Qu, G.; Zeng, L.; Li, H., Chemisorption effect enables high-loading zinc-iodine batteries. Nano Energy 2024, 119, 109096.

[17] Hu, T.; Zhao, Y.; Yang, Y.; Lv, H.; Zhong, R.; Ding, F.; Mo, F.; Hu, H.; Zhi, C.; Liang, G., Development of Inverse-Opal-Structured Charge-Deficient Co9S8@nitrogen-Doped-Carbon to Catalytically Enable High Energy and High Power for the Two-Electron Transfer I+/I- Electrode. Adv. Mater. 2024, 36, e2312246.

[18] Li, X.; Li, M.; Huang, Z.; Liang, G.; Chen, Z.; Yang, Q.; Huang, Q.; Zhi, C., Activating the I0/I+ redox couple in an aqueous I2–Zn battery to achieve a high voltage plateau. Energy Environ. Sci. 2021, 14, 407-413.

[19] Feng, W. T.; Feng, N. Y.; Liu, W.; Cui, Y. P.; Chen, C.; Dong, T. T.; Liu, S.; Deng, W. Q.; Wang, H. L.; Jin, Y. C., Liquid-State Templates for Constructing B, N, Co-Doping Porous Carbons with a Boosting of Potassium-Ion Storage Performance. Adv. Energy Mater. 2021, 11, 2003215.

[20] Feng, W. T.; Cui, Y. P.; Liu, W.; Wang, H. L.; Zhang, Y.; Du, Y. X.; Liu, S.; Wang, H. L.; Gao, X.; Wang, T. Q., Rigid-Flexible Coupling Carbon Skeleton and Potassium-Carbonate-Dominated Solid Electrolyte Interface Achieving Superior Potassium-Ion Storage. ACS Nano 2020, 14, 4938-4949.

[21] Wang, M.; Meng, Y.; Sajid, M.; Xie, Z.; Tong, P.; Ma, Z.; Zhang, K.; Shen, D.; Luo, R.; Song, L.; Wu, L.; Zheng, X.; Li, X.; Chen, W., Bidentate Coordination Structure Facilitates High‐Voltage and High‐Utilization Aqueous Zn‐I2 Batteries. Angew. Chem. Int. Ed. 2024, e202404784.

[22] Liu, T.; Lei, C.; Wang, H.; Yang, W.; He, X.; Liang, X., Triflate anion chemistry for enhanced four-electron zinc-iodine aqueous batteries. Chem. Commun. 2024, 60, 7447-7450.

[23] Zhang, Q.; Ma, Y.; Lu, Y.; Ni, Y.; Lin, L.; Hao, Z.; Yan, Z.; Zhao, Q.; Chen, J., Halogenated Zn2+ Solvation Structure for Reversible Zn Metal Batteries. J. Am. Chem. Soc. 2022, 144, 18435-18443.

Downloads

Published

08-09-2025

How to Cite

Feng, W., Wei, X., Han, J., Ma, C., Sun, Y., Li, P., Kong, D., & Zhi, L. (2025). Physico-Chemical Doubly Confinement and Chloride Ion Activation Enabled Two-Electron Conversion Zn-I2 Battery. Highlights in Science, Engineering and Technology, 151, 83-91. https://doi.org/10.54097/z1pgtb19