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Abstract. Mobile communication technology has evolved significantly from 1G analog systems to 
5G intelligent networks, focusing on improvements in spectral efficiency, network capacity, and 
adaptability. Currently, 5G encounters challenges such as limited spectrum resources and increased 
bandwidth pressure, especially in high-density user environments. While traditional Non-Orthogonal 
Multiple Access (NOMA) technologies, like SCMA, and Device-to-Device (D2D) communication 
enhance spectrum reuse, they still face issues with dynamic resource allocation and cross-layer 
collaboration. This paper introduces an intelligent resource allocation framework leveraging Deep 
Reinforcement Learning (DRL) for dynamic power control and interference coordination through 
multi-agent collaboration. A Markov decision process model is developed, and a distributed DRL 
algorithm is created to optimize local and global performance in cellular networks. Experiments show 
that DRL-driven SCMA codebook scheduling can improve spectral efficiency by 20% while enabling 
distributed interference management and network slicing optimization in D2D scenarios. 
Nonetheless, challenges remain in practical DRL deployment, such as online training costs and 
policy interpretability. Future advancements will involve integrating DRL with sixth-generation (6G) 
technologies like intelligent reflecting surfaces (RIS) and terahertz beamforming, fostering a shift 
towards cognitive communication systems with autonomous perception and global optimization. 

Keywords: Mobile communication technology, non-orthogonal multiple access, sparse code 
multiple access, direct device communication, dynamic resource allocation. 

1. Introduction 

The evolution of wireless communication technology is driven by the need for efficient resource 

allocation. Since Bell Labs introduced the first-generation cellular system (AMPS) in the 1970s, 

mobile communication has experienced transformative changes—transitioning from analog to digital, 

narrowband to broadband, and shifting focus from voice-centric services to the integration of multiple 

services. The 1G era was pivotal in establishing the groundwork for wireless communication through 

dynamic spectrum selection and cellular architecture, while the subsequent 2G (GSM) and 3G 

(WCDMA) technologies facilitated the widespread adoption of voice and low-speed data through 

digitization and multiple access techniques. The advent of 4G and 5G brought about further 

innovations, including Orthogonal Frequency Division Multiple Access (OFDMA) and Non-

Orthogonal Multiple Access (NOMA), which overcame spectral efficiency challenges and spurred 

the explosive growth of mobile internet and the Internet of Things (IoT). However, as 5G 

commercialization accelerates and research into 6G intensifies, the exponential increase in network 

data traffic has exacerbated conflicts arising from high-density user scenarios, diverse service 

demands, and limited spectrum resources, revealing significant shortcomings in conventional 

resource allocation strategies. 

The primary challenge in wireless resource allocation lies in achieving a balance between spectrum 

efficiency and interference management. Power-domain multiplexing techniques like NOMA, which 

utilize superposition coding and successive interference cancellation (SIC), greatly enhance spectral 

usage. Nevertheless, their dynamic optimization necessitates complex channel state information (CSI) 

and user pairing strategies, leading to substantial computational demands. Likewise, Device-to-

Device (D2D) communication mitigates core network congestion through decentralized architectures, 

but its spectrum-sharing mechanisms require coordinated solutions to address cross-layer interference 

and energy efficiency. Concurrently, the synergistic utilization of high-frequency bands (such as 
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millimeter-wave and terahertz) alongside low-frequency bands has become a significant focus for 6G. 

For example, terahertz beamforming can facilitate ultra-high-speed data transmission across a 30 GHz 

operational bandwidth, but its limited ability to penetrate obstacles and provide coverage necessitates 

integration with emerging technologies like Reconfigurable Intelligent Surfaces (RIS). 

In this landscape, artificial intelligence (AI) and Deep Reinforcement Learning (DRL) present 

transformative solutions for resource allocation challenges. DRL employs end-to-end learning 

frameworks to adaptively optimize power allocation, codebook scheduling, and interference 

management, significantly reducing computational costs in contrast to traditional game-theoretic 

methods. Research findings indicate that DRL can achieve a 20% enhancement in spectral efficiency 

for Sparse Code Multiple Access (SCMA) through dynamic power adjustments. In D2D scenarios, 

multi-agent collaboration facilitates distributed interference management, ultimately extending the 

battery life of IoT devices. However, deploying DRL is not without its challenges, including the 

acquisition of online training data, policy interpretability, and protocol standardization, all of which 

necessitate breakthroughs through digital twin technologies and explainable AI methods. 

This study aims to comprehensively integrate cutting-edge multiple access technologies, 

intelligent algorithms, and emerging trends in 6G to propose a multi-layer resource allocation 

framework. By investigating the synergies among NOMA, D2D, and DRL, as well as exploring the 

dynamic regulatory potential of terahertz bands and RIS, it provides theoretical foundations for 

developing high-density, low-latency 6G networks. Recent advancements, such as terahertz 

polarization state modulation and RIS-enabled reconfiguration of wireless environments, illustrate 

innovative pathways for efficient utilization of high-frequency resources. These innovations not only 

advance wireless networks. 

2. Evolution of wireless communication and resource allocation challenges 

2.1. Network development history and resource conflicts 

The current landscape of wireless communication technology is marked by unprecedented 

demands on resource allocation, driven by the widespread deployment of 5G networks and emerging 

applications such as the Internet of Things (IoT), ultra-high-definition video streaming, and massive 

machine-type communications. These advancements have led to exponential growth in network data 

traffic, exacerbating systemic challenges in spectrum scarcity, bandwidth limitations, and 

interference management. Traditional orthogonal resource allocation models, designed for legacy 

systems, struggle to address the dual pressures of coverage and capacity. Millimeter-wave bands, 

while offering high throughput, suffer from limited coverage and poor penetration, whereas low-

frequency bands face congestion due to overcrowded device deployments. This imbalance is 

particularly acute in urban environments and IoT-dense scenarios, where high user density and 

centralized device clusters create fierce competition for limited resources, resulting in latency spikes, 

energy inefficiency, and degraded quality of service (QoS). Furthermore, the lack of coordination 

across the industry ecosystem—spanning spectrum allocation, chip design, and infrastructure 

deployment—has intensified resource fragmentation and operational costs, hindering the scalable 

adoption of next-generation technologies. 

To overcome these challenges, innovative approaches such as non-orthogonal multiple access 

(NOMA), sparse code multiple access (SCMA), and device-to-device (D2D) communication have 

emerged as transformative solutions. NOMA addresses spectrum scarcity by enabling non-orthogonal 

resource sharing through power-domain multiplexing, allowing multiple users to coexist on the same 

frequency band with differentiated power levels. By superimposing user signals and leveraging 

successive interference cancellation (SIC), it significantly enhances spectral efficiency while 

supporting massive connectivity in high-density environments. SCMA complements this by 

introducing sparse codebook-based modulation, where data streams are mapped to multi-dimensional 

codewords with low collision probability. This reduces decoding complexity and improves 

connectivity density, making it ideal for scenarios requiring simultaneous access from numerous low-
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power IoT devices. Meanwhile, D2D communication alleviates core network congestion by enabling 

direct data exchange between proximate devices, bypassing traditional base station routing. This not 

only reduces latency and spectrum contention but also enhances energy efficiency, particularly in 

localized applications like smart factories or vehicular networks. Together, these technologies form 

a synergistic framework for dynamic resource optimization: NOMA maximizes spectral utilization, 

SCMA enhances access scalability, and D2D offloads traffic pressure, collectively enabling adaptive 

interference management and heterogeneous service coordination. Their integration addresses the 

critical gaps in current systems, offering a pathway to balance coverage-capacity trade-offs, mitigate 

resource contention, and support the ultra-reliable, low-latency requirements of future 6G networks. 

By redefining resource allocation paradigms, they pave the way for sustainable growth in an era 

defined by hyper-connectivity and diverse application demands. 

2.2. Existing resource allocation methodology 

Non-Orthogonal Multiple Access (NOMA) is a technique to improve the efficiency of wireless 

communication through non-orthogonal resource allocation, the core of which lies in the power 

domain multiplexing and interference co-management. NOMA allows users to transmit with different 

power stacks at the same time and frequency resources, and the receiving end decodes the signals 

layer by layer by means of the Successive Interference Cancellation (SIC) technique: the user with 

the poorer channel conditions is assigned higher power, and its signal is decoded and canceled first. 

The signals of users with poorer channel conditions are assigned higher power and their signals are 

prioritized for decoding and cancellation, followed by decoding the signals of low-power users. This 

mechanism significantly improves spectral efficiency, especially for scenarios with large differences 

in user channels or high density (e.g., IoT, dense urban areas). NOMA is a key technology in fifth-

generation (5G) systems, has emerged as a promising alternative to traditional Orthogonal Multiple 

Access (OMA) by enabling efficient spectrum utilization and balancing user fairness with spectral 

efficiency [1]. Unlike OMA, which relies on orthogonal resource allocation, NOMA allows 

simultaneous transmission to multiple users over shared time, frequency, or code resources through 

power-domain or code-domain multiplexing [2]. In power-domain NOMA, users are differentiated 

by distinct power levels at the transmitter, with receivers employing successive interference 

cancellation (SIC) to decode signals. Code-domain NOMA, meanwhile, optimizes resource sharing 

through advanced coding schemes. For downlink scenarios, NOMA prioritizes fairness by allocating 

higher power to users with weaker channel conditions while leveraging superposition coding and SIC 

at base stations. Critical challenges involve optimizing power allocation and user pairing strategies, 

as exhaustive searches for ideal resource combinations remain computationally intensive. Research 

indicates that NOMA significantly enhances system capacity and cell-edge user throughput compared 

to OMA, with further performance gains achievable through integration with technologies like 

Bioresearch by Liang Xiaolin (2024) indicates that NOMA can increase achievable rate by up to 30% 

compared to OMA. Effective algorithms for dynamic resource management continue to be a focus 

for maximizing NOMA’s potential in real-world deployments [3]. 
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Figure 1. Schematic diagram of NOMA principle 

As a critical 5G innovation, Sparse Code Multiple Access (SCMA)—a non-orthogonal multiple 

access (NOMA) variant developed by Huawei—integrates principles of OFDMA and CDMA to 

enable multi-user transmission in the frequency domain [4] [5]. By leveraging multi-dimensional 

codebooks, SCMA enhances spectral efficiency and user capacity through dynamic power allocation 

tailored to individual nodes, ensuring optimal throughput and service quality. Its downlink 

implementation employs a three-tier power allocation strategy that dynamically adjusts transmission 

power based on channel state information (CSI) and Quality of Service (QoS) requirements, 

maintaining communication reliability. 

 

Figure 2. Schematic diagram of SCMA principle 



Highlights in Science, Engineering and Technology ACME 2025 

Volume 149 (2025)  

 

102 

While SCMA optimizes multi-user transmission through advanced coding and power control, 5G 

networks further enhance connectivity scalability by integrating Device-to-Device (D2D) 

communication—a paradigm that shifts traffic away from centralized infrastructure. Complementing 

this, Device-to-Device (D2D) communication enables direct data exchange between proximate 

devices, bypassing cellular infrastructure to reduce network congestion and improve QoS [6] [7]. 

Standardized as Proximity Services (ProSe) by 3GPP, D2D operates via in-band (licensed spectrum) 

or out-band (unlicensed spectrum) modes [8]. In-band D2D further divides into underlay (shared 

spectrum with cellular users) and overlay (dedicated spectrum) approaches, while out-band supports 

autonomous (base station-independent) or controlled (base station-managed) operations. Key 

resource allocation challenges, such as power distribution and spectrum management, focus on 

balancing energy efficiency, spectral utilization, and system throughput, positioning D2D as a 

cornerstone for 5G’s high-density connectivity demands. 

In recent years, Deep Reinforcement Learning (DRL) has demonstrated unique advantages in 

resource allocation. Addressing challenges posed by multi-dimensional resource competition and 

dynamic demand variations in complex environments, traditional methods often struggle with high-

dimensional state modeling and real-time decision efficiency. DRL establishes an end-to-end 

mapping from environmental states to allocation strategies by integrating the perception capabilities 

of Deep Neural Networks (DNNs) with the sequential decision-making mechanisms of 

Reinforcement Learning (RL). Its core lies in agents progressively learning optimal strategies to 

maximize long-term rewards through iterative trial-and-error interactions, particularly suited for 

scenarios with uncertainty and time-varying resource dynamics. Research indicates that DRL not only 

resolves Multi-Agent Collaboration (MAC) optimization problems challenging for traditional 

approaches but also enables adaptive policy adjustments in unknown environments, achieving 

dynamic allocation of computing resources, communication bandwidth, and spectrum resources. 

Leveraging model-free learning capabilities, systems can execute efficient decisions without prior 

knowledge of environmental dynamics, offering a novel pathway for autonomous resource 

management in intelligent networks. 

3. Intelligent resource management in wireless networks using DRL  

DRL [9] has become a key technology in the field of Dynamic Spectrum Access by virtue of its 

powerful ability to process high-dimensional state and action spaces, and the ability to efficiently map 

the environment states to optimal actions to maximize the Q-value by combining a deep neural 

network with a Q-learning framework to form a Deep Q Network (DQN). Studies have shown that 

the DRL algorithm developed by Talaat et al [10]. Successfully optimizes multi-player utility sharing 

in multi-intelligence collaborative scenarios (e.g., MNIST image classification games and channel 

switching puzzles), while Li et al. design a DRL-based spectrum sensing strategy for environments 

in which a single user dynamically interacts with an unknown joint Markov model, overcoming the 

problems of unknown system dynamics and the study by Chang et al. further focuses on the dynamic 

access decision of a single cognitive agent in N channels, and theoretically demonstrates that the 

optimal policy can be resolved when the channel state transfer probability is known, while the deep 

Q-learning is used to train the state-action value function when the model is unknown, and 

experimentally verifies that the learning policy is as close as possible to the theoretical optimal 

solution [11] [12]. Approximation. Aiming at the challenges of IoT devices with limited size and 

insufficient spectrum sensing capability, Tan et al. propose a spectrum sensor assistance system based 

on reinforcement learning, which collaboratively realizes dynamic spectrum access through external 

sensors and effectively improves the spectrum utilization of existing networks [13]. Together, these 

results highlight the core advantages of DRL in dynamic spectrum allocation - circumventing 

complex modeling and adaptively optimizing spectrum resource allocation through an end-to-end 

learning mechanism, which provides an important technological path for autonomous decision-

making and efficient resource management in smart wireless networks. 
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Deep Reinforcement Learning (DRL) provides breakthrough solutions for the optimization of 5G 

core technologies (e.g., SCMA and D2D) by integrating deep neural networks and reinforcement 

learning mechanisms: in SCMA scenarios, DRL dynamically adjusts the power allocation and multi-

dimensional codebook scheduling, and optimizes the spectral efficiency based on the real-time 

channel state and service demand, which significantly reduces computational complexity and 

improves user capacity compared to the traditional game-theoretic approach that relies on fixed 

models. Compared with traditional game theory methods relying on fixed models, its end-to-end 

learning capability significantly reduces computational complexity and improves user capacity; for 

the spectrum sharing and interference coordination problems of D2D communication, DRL realizes 

distributed power control and dynamic spectrum access through multi-intelligence collaboration, 

which extends the endurance of IoT devices while reducing co-frequency interference, while 

traditional centralized scheduling is difficult to match the demand of high-density scenarios due to 

signaling overhead and response delay; furthermore, DRL supports SCMA and multi-dimensional 

codebook scheduling. DRL supports cross-layer co-optimization of SCMA and D2D, realizes 

dynamic allocation of network slice resources (e.g., prioritizing ultra-low latency of URLLC) through 

a layered reinforcement learning framework, and builds a self-healing network to cope with sudden 

interferences or link interruptions by means of a continuous learning mechanism, which is more 

adaptable to 5G heterogeneous environments than the traditional layered optimization strategy; 

however, the actual deployment of DRL still needs to overcome the challenges of obtaining online 

training data, model interpretation, and protocol standardization, as well as the need of online training 

data acquisition, model interpretation, and protocol standardization. However, the actual deployment 

of DRL still needs to overcome the challenges of online training data acquisition, model 

interpretability, and protocol standardization and integration. 

The primary challenge in obtaining online training data is the data distribution shift in dynamic 

environments. In wireless communication scenarios, user mobility and channel variability lead to 

highly unstable real-time data distributions. For example, in densely populated urban areas, rapid 

changes in user locations and channel states can quickly render training data obsolete, making it 

difficult for DRL models to capture long-term dynamics. Privacy and security constraints further 

complicate data acquisition. To comply with regulations like GDPR, user-level data (such as location 

and traffic patterns) must be anonymized, potentially undermining data utility—anonymized channel 

state information (CSI) collected by base stations may not accurately reflect user behavior, reducing 

the predictive accuracy of DRL models. Additionally, labeling costs and noise issues cannot be 

overlooked. Automatic labels based on instantaneous signal-to-noise ratios may be impacted by 

multipath interference, particularly in D2D communication, where dynamic interference can lead to 

estimate discrepancies and affect policy convergence. 

Lack of model interpretability also limits the trustworthiness of DRL deployments. The use of 

complex neural networks results in opacity in decision-making logic. For instance, in Sparse Code 

Multiple Access (SCMA) systems, DRL-driven codebook scheduling may allocate certain users to 

low-priority levels without clear reasons for the selection of specific power levels. This is particularly 

crucial in regulatory contexts, where operators need to verify algorithms’ fairness, and regulatory 

bodies require compliance audits. Stringent requirements from organizations like the European 

Telecommunications Standards Institute (ETSI) regarding algorithm transparency could restrict 

DRL's application in critical tasks. Additionally, when DRL policies result in network performance 

declines, tracing decisions using historical reward functions becomes difficult, extending operational 

response times. 

Protocol standardization lags further impede DRL’s large-scale deployment. Current 

communication protocols (such as 5G NR) do not define interaction interfaces for DRL, complicating 

cross-vendor collaboration. For instance, Huawei's SCMA may be incompatible with Ericsson's 

Dynamic Spectrum Sharing (DSS), hindering distributed control. Real-time constraints in ultra-

reliable low-latency communication (URLLC) scenarios require DRL to respond within milliseconds, 

but traditional signaling (such as CSI feedback) can introduce delays. If base station cooperation 
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relies on X2 interfaces and protocols lack low-latency optimizations for DRL, real-time decision-

making efficiency will be significantly constrained. Furthermore, the absence of a unified framework 

can cause parameter mapping issues between different DRL algorithms (like DQN and PPO) and 

communication protocols, resulting in global policy conflicts if independently trained models yield 

inconsistent action formats. 

DRL method may achieve deep coupling with 6G intelligent hypersurface (RIS), terahertz beam 

fouling and other technologies in the future will promote the evolution of wireless networks to 

the“cognitive intelligence”paradigm of environment sensing and autonomous decision making. 

An example will be given to show how DRL work. The network consists of N cells, each of which 

contains a centrally located Base Station (BS) and M User Equipment (UE) randomly distributed in 

the cell coverage area. All BSs share the flat fading spectrum resources to provide services to M UEs. 

All base stations and users are equipped with a single antenna, and all BSs multiplex a single spectrum 

resource in the same time slot. The set of BSs and UEs can be denoted as N = {1,2,3, … , N} and 

M = {1,2,3, … ,M}, respectively. A server acting as a central trainer is located in the cloud, which is 

responsible for the training and distribution of the BS power allocation policies. The whole network 

adopts a fully synchronized time system: at the beginning of each time slot, each BS will associate 

multiple UEs within its own cell for power allocation, and each UE is associated with the BS of the 

cell it is currently in by default. in addition, the UEs will move randomly within the cell at the 

beginning of each time slot. The above proposed power allocation problem is modeled as a Markov 

Decision Process (MDP) and a Multi-Agent Deep Reinforcement Learning (DRL) approach is used 

to achieve dynamic power allocation. Specifically, each base station (BS) is considered as an 

independent intelligence and individualized State, Action and Reward functions are designed for it. 

The core elements of the MDP-based power allocation model are described below. 

(1) State S: The state is the basic information required by the intelligent body to perceive the 

environment, but if the state information is too large and redundant, it will be difficult for the 

intelligent body to quickly and accurately extract effective features. Therefore, the state designed for 

intelligent body n in this paper is defined as: 

s(𝑡) = {𝐺𝑛(𝑡), 𝑃𝑛(𝑡 − 1), 𝐶𝑛(𝑡 − 1), 𝐺𝑖∈𝐷(𝑡 − 1), 𝐶𝑖∈𝐷(𝑡 − 1)}             (1) 

In addition to the underlying channel states, two new features are introduced in this paper to 

enhance the decision-making capability of the intelligences. Specifically, Gn(t)  denotes the 

normalized channel gain of the current cell n, and Pn(t − 1) and Cn(t − 1) record the transmit 

power and transmission rate of the cell in the previous time slot, respectively. By fusing the historical 

state information of the neighborhood, the intelligent body needs to weigh its own channel conditions 

and the dynamic interference level of the neighboring networks during action selection, thus avoiding 

the global performance degradation triggered by the local greedy strategy. 

(2) Action A: The transmit power is discretized into |A| levels, from which the intelligent body 

needs to select the optimal action. Under the maximum power constraint Pmax, the set of available 

discrete powers is defined as: 

𝑎𝑡 = {0,
𝑃max

|𝐴|−1
,
2𝑃max

|𝐴|−1
, … , 𝑃max},                          (2) 

(3) Reward R: The environment provides feedback to the intelligent body on the merits of its 

actions through a reward mechanism to drive the policy update. The reward function designed here 

is not only affected by the intelligent body's own actions, but also needs to consider the interference 

effect of neighboring cell base stations (BSs). Specifically, when the neighboring cell BSs use high-

power communication, the interference in the current cell will be significantly enhanced. Therefore, 

the reward function needs to take into account the correlation performance between its own 

transmission rate and that of neighboring cells. Based on this, this paper defines the reward rt for time 

slot t as: 
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∑ ∑ ((log2 (1 +
gi,i,m(t)pi,m(t)

∑ gj,i,m(t)∑ pj,m(t)M
m=1

D
j≠i,j≠n +∑ gi,i,m(t)pi,k(t)

M
k≠m +σ2

)) − Ci,m(t))
M
m=1i∈D       (3) 

The first term in curly brackets in Eq. represents the sum of the theoretical rates when ignoring the 

interference of cell n to the neighboring cells, and the second term is the sum of the actual rates of 

the neighboring cells after the interference. The difference between the two quantifies the interference 

loss caused by cell n to the neighbor. The penalty term is introduced to constrain the intelligence from 

over-optimizing the local rate-avoiding the global performance degradation triggered by the decrease 

in the neighbor's rate due to its over-boosting power. The mechanism provides dynamic feedback on 

the interference cost and guides the intelligent body to adjust its power strategy in subsequent time 

slots to achieve a balanced improvement between local optimization and the overall rate of the system. 

Similar examples are also given. Paper [14] gives a model-free distributed execution DQN 

algorithm is proposed to solve the power allocation problem of power output in wireless 

communication networks. In the paper, each transmitter is modeled as an intelligent body, which 

collects instantaneous cross cell CSI and QoS at the beginning of each time slot and adjusts its own 

transmission power. Another method is in paper [15]. 

4. Conclusion 

Deep Reinforcement Learning (DRL) provides breakthrough solutions for dynamic spectrum 

access and 5G core technology optimization by fusing the high-dimensional state-action space 

processing capability and end-to-end decision-making mechanism of deep neural networks and Q-

learning framework. Its core innovations are reflected in three aspects: first, avoiding complex 

modeling in dynamic spectrum allocation, realizing utility optimization in multi-intelligence 

collaboration scenarios through the DQN framework, and solving adaptive sensing and multi-channel 

dynamic decision-making in unknown Markov environments to approach the theoretical optimum; 

second, upgrading intelligent architecture in 5G heterogeneous networks-SCMA improves spectral 

efficiency through real-time channel state-driven codebook scheduling and cross-layer resource 

allocation, and DQN improves the state-action-space processing capability and end-to-end decision-

making mechanism to improve spectrum efficiency. resource allocation to improve spectrum 

efficiency, D2D constructs a distributed interference coordination mechanism with the help of multi-

intelligence collaboration to break through the response delay limitation of traditional centralized 

scheduling in high-density scenarios, and supports the dynamic optimization of network slicing 

through a hierarchical reinforcement learning framework; thirdly, designing intelligent architectures 

with global equilibrium through quantized interference loss and neighborhood historical state fusion, 

and designing intelligent architectures with global equilibrium and dynamic decision-making 

intelligent architecture to approach the theoretical optimum. Third, the reward function with global 

equilibrium characteristics is designed by quantizing the interference loss and neighbor history state 

fusion, which solves the performance degradation problem caused by the local greedy strategy and 

provides a scalable autonomous decision-making paradigm for multi-base station power allocation. 

Its practical value has been verified in terms of capacity enhancement in dense scenarios, range 

extension of IoT devices, and network self-healing enhancement. Despite the issues of online training 

data acquisition, model interpretability, protocol standardization and integration, digital twin 

simulation and interpretable AI can accelerate its engineering landing. In the future, DRL will be 

deeply integrated with 6G Reflective Surface Intelligence (RIS), terahertz beam fusion, and other 

technologies to promote the evolution of wireless networks to the cognitive intelligence paradigm of 

“environment perception-autonomous decision-making-global optimization”. 
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