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Abstract. This study quantifies the impact of primary energy consumption on climate change in 
Sichuan Province by analyzing 2012–2022 datasets through integrated time series analysis and 
causal inference methods. Key methodologies include anomaly detection via boxplot analysis, data 
correction using Lagrange interpolation and moving averages, and modeling via polynomial fitting, 
multiple linear regression, Pearson correlation, and Granger causality tests. Results demonstrate: 
(1) Significant positive correlations between fossil fuel consumption (coal, petroleum, natural gas) 
and CO₂ emissions (correlation coefficient: 0.9654), with coal exhibiting the strongest driving effect 

(regression coefficient: 0.9055); (2) CO₂ emissions act as a Granger cause of temperature variation 
(lag order: 3, p-value <0.05), while no causal link with precipitation is observed; (3) Weak nonlinear 
climate interactions, evidenced by a marginal positive correlation between CO₂ and temperature 
(Pearson: 0.2106) and a weak negative correlation with precipitation (-0.3616). As a critical energy 
hub and ecological barrier in western China, Sichuan’s fossil fuel dependency underscores the 
urgency of transitioning to renewable energy and implementing climate-resilient water management. 
The proposed "time series-causal inference" framework offers scalable solutions for regional energy-
climate governance, aligning with global sustainability goals and providing actionable insights for 
policymakers to prioritize coal reduction and enhance adaptive strategies in ecologically vulnerable 
regions. 

Keywords: Primary Energy Consumption, Climate Change, Time Series Analysis, Pearson 
Correlation, Granger Causality Test. 

1. Introduction 

1.1. Research Background 

Global climate change has emerged as a critical global challenge. Energy consumption, as a 

primary source of carbon emissions, is closely linked to climatic variations. Sichuan Province, a major 

energy-consuming region in China, has experienced continuous growth in primary energy 

consumption amid rapid economic development, potentially exerting significant impacts on regional 

and global climate systems. Investigating the relationship between primary energy consumption and 

climate change in Sichuan Province is essential for formulating rational energy policies and climate 

change mitigation strategies. 

1.2. Literature Review 

Global climate change has emerged as a critical challenge for humanity in the 21st century. Energy 

consumption, as a primary source of carbon emissions, and its interaction with climate systems have 

garnered significant academic attention. Scholars worldwide have extensively explored the linkages 

between energy consumption and climate change, providing critical insights for regional climate 

governance and energy policy formulation. 
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At the international level, numerous studies have confirmed the strong correlation between fossil 

energy consumption and greenhouse gas emissions. For instance, energy system analyses based on 

the LEAP model (Dai Zhipeng, 2021) [1] demonstrate that overreliance on coal and petroleum 

remains a core driver of carbon emission growth, while low-carbon energy transitions can markedly 

mitigate global warming trends. Furthermore, time series analysis methods, such as the Granger 

causality test, have been widely applied to investigate energy-climate dynamics. These methods 

reveal causal relationships between carbon emissions and temperature variations by analyzing lag 

effects (Tang Xiaoyan, 2024) [2]. However, existing research predominantly focuses on developed 

countries or global scales, with limited exploration of regional disparities in developing nations. 

In the Chinese context, studies on energy-climate linkages have progressively shifted from macro-

level analyses to region-specific investigations. Wang Yanan et al. (2022) [3] identified the positive 

role of clean energy adoption in climate improvement through CO₂ mediation but overlooked the 

differential impacts of distinct energy types. For southwestern China, Xu Haining et al. (2019) [4] 

analyzed spatiotemporal patterns of precipitation changes, highlighting climate-induced threats to 

regional hydrological cycles without integrating energy consumption drivers. Yang Mingxin et al. 

(2022) [5] simulated and projected summer climate changes in southwestern China using the CMIP6 

model, revealing spatial heterogeneity in regional climate responses, which provides methodological 

insights for analyzing Sichuan’s climate dynamics. Sichuan Province, a major energy consumer in 

western China, exhibits unique climatic influences due to its coal dominated energy structure and 

abundant hydropower resources. Xiang Bo et al. (2016) [6] quantified the potential of renewable 

energy utilization in Sichuan through carbon pinch analysis, indicating that synergistic development 

of hydropower and photovoltaic resources is a critical pathway for low-carbon energy transition in 

the region Li Xia (2020) [7] explored Sichuan’s energy-saving potential from an energy-economy 

coupling perspective but failed to systematically quantify direct causal effects of energy consumption 

on climate indicators such as temperature and precipitation. The China Climate Change Blue Book 

(2023) [8] systematically summarizes observational facts of national climate change, providing 

authoritative data support for analyzing long-term trends in temperature and precipitation in Sichuan 

Province. 

Current literature exhibits three key limitations: (1) Regional studies predominantly emphasize the 

economic impacts of energy consumption, with inadequate causal mechanism analysis of climatic 

effects;(2) Methodologies overly rely on correlation analysis, lacking integrated applications of time 

series and causal inference approaches;(3) Empirical research on the relationship between Sichuan’s 

energy transition and climate responses remains absent. Long Tenggang (2024) [9] proposed an 

environmental impact assessment framework for climate change, offering theoretical references for 

future multi-factor coupling analysis in this field. 

To address these gaps, this study employs 2012–2022 data from Sichuan Province, integrating 

time series analysis and causal inference methods to systematically investigate dynamic relationships 

among coal, petroleum, natural gas consumption, and climate variables (temperature, precipitation, 

CO₂ emissions). By combining polynomial fitting, multiple linear regression, Pearson correlation, 

and Granger causality tests, we aim to uncover nonlinear impacts and causal pathways of energy 

consumption on climate change. The findings seek to provide scientific support for optimizing energy 

policies and enhancing climate adaptation management in Sichuan, thereby filling critical gaps in 

regional research. 

2. Materials and Methods 

2.1. Data Acquisition and Preprocessing 

This study collected data on petroleum, natural gas, coal consumption, temperature, precipitation, 

and CO₂ emissions in Sichuan Province from the National Bureau of Statistics (stats.gov.cn), China 

Energy Statistical Yearbook (nbsti.net), and Statistical Yearbook of Sichuan Province (sc.gov.cn). 

Missing values and outliers were addressed using the box-plot method, Lagrange polynomial 
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interpolation, and moving average techniques, followed by data standardization to ensure consistency 

and comparability. 

2.2. Methodology 

The research methodology and statistical analyses adopted in this study are grounded in the 

probability theory and mathematical statistics framework established by Mao et al. (2011) [10], 

thereby ensuring the scientific validity of data processing and the robustness of the models. 

2.2.1. Polynomial Fitting Method 

The polynomial fitting method employs the least squares principle to establish the relationship f 

(x, A) between two variables from a given nonlinear dataset {(xᵢ, yᵢ), i=0, 1, 2,...,n}, where A=(a₀, 

a₁,...,aₙ) represents undetermined coefficients. The method minimizes the sum of squared residuals 

between observed values and model predictions, yielding the polynomial curve: 

𝑦 = 𝑎0 + 𝑎1𝑥𝑛 + 𝑎2𝑥𝑛−1 + ⋯ + 𝑎𝑛𝑥                       (1) 

This curve effectively captures nonlinear relationships within the measured data. 

2.2.2. Multiple Linear Regression 

The multiple linear regression model employs two or more explanatory variables to quantify their 

collective influence on a dependent variable, revealing both the magnitude and direction of these 

effects. The model is expressed as: 

 𝑦 = 𝑦0 + 𝛽1𝑥1 + 𝛽2𝑥2 + ⋯ + 𝜀                          (2) 

2.2.3. Pearson Correlation 

Pearson correlation measures linear relationships between variables. The correlation coefficient r 

ranges from [−1,1]: 

r<0: indicates a negative linear correlation; 

r>0: indicates a positive linear correlation; 

r=0: implies no significant linear relationship. 

2.2.4. Granger Causality Test 

The Granger causality test assumes that all predictive information for variables y and x is 

embedded within their time series. The test involves estimating the following regressions: 

𝑦𝑖 = ∑ 𝛼𝑖𝑥𝑡−𝑖𝑖−1 + ∑ 𝛽𝑗𝑦𝑡−𝑗𝑗−1 + 𝑢1𝑡                      (3) 

𝑥𝑖 = ∑ 𝜆𝑖𝑥𝑡−1𝑖−1 + ∑ 𝛿𝑗𝑦𝑡−𝑗𝑗−𝑖 + 𝑢2𝑡                       (4) 

Where u₁ₜ and u₂ₜ are uncorrelated white noise terms. Equation (3) posits that current y depends on 

past values of y and x, while Equation (4) assumes analogous behavior for x. The null hypotheses are: 

For Equation (3): H₀: α₁ = α₂ = ⋯ = αq=0; For Equation (4): H₀: δ₁ = δ₂ = ⋯ = δs=0. 

Four scenarios are analyzed: 

Unidirectional causality (x → y): x Granger-causes y. 

Unidirectional causality (y → x): y Granger-causes x. 

Bidirectional causality: Mutual causation between x and y. 

Independence: No causal relationship between x and y. 

The testing procedure is illustrated in Figure 1. 
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Figure 1. Granger Causality Test Flowchart. 

3. Results and Analysis 

3.1. Data Processing and Visualization 

3.1.1. Data Integration 

To facilitate statistical modeling, data on coal, petroleum, natural gas consumption, temperature, 

precipitation, and CO₂ emissions from diverse sources were integrated. This integration ensured data 

integrity and consistency for subsequent analyses. The consolidated datasets for energy consumption 

and climate indicators are presented in Table.1. and Table.2. 

Table 1. Primary Energy Consumption by Type (2012–2022) 

Indicato

r 

Coal Consumption (million 

tons) 

Natural Gas Consumption 

(100 million cubic 

meters) 

Petroleum Consumption (million 

tons) 

2012 11872 153 2194.55 

2013 11678.55 148.3 2428.6 

2014 11045.39 165.17 2724.1 

2015 9288.9 170.98 2408.7 

2016 8869.49 181.57 2474.6 

2017 7855.88 198.91 2579.7 

2018 7495.78 237 2549 

2019 7713.47 254.38 2689.1 

2020 7501.6 261.8 2584.3 

2021 7796.1 285.4 2660.1 

2022 7806.6 288.9 2713.4 

Detrend Data

Remove Mean 

from Data

ADF Test / IPS 

Test

First-Order 

Differencing

Determine 

Order via AIC 

Criterion

Durbin-

Watson Test

Discard Data
Cointegration 

Test

Granger 

Causality Test

Test Failed

Test Passed

Test Passed

Test Failed
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Table 2. Climate Indicator Metrics (2012–2022) 

Indicator Temperature (°C) Precipitation (mm) CO₂ Emissions (million tons) 

2012 16.3714 22500 39456.48161 

2013 17.3952 23152.9 40709.02213 

2014 17.39 22598.3 40870.69912 

2015 17.381 21092.2 38298.57672 

2016 17.1905 21298.6 37747.27273 

2017 17.0476 21388.3 36227.96252 

2018 16.981 25039.7 34319.86571 

2019 16.9464 22919.7 35902.95336 

2020 17.0274 24843.1 35509.32282 

2021 17.1107 24838.2 35901.28646 

2022 17.5936 19291.2 37341.7246 
 

3.1.2. Data Visualization and Anomaly Detection 

Integrated data tables were read using MATLAB built-in functions (e.g., readtable, readmatrix). 

Temporal trends and distribution patterns were visualized through graphical tools (plot, scatter, bar). 

For instance, line charts depicting coal, petroleum, and natural gas consumption over time were 

generated to analyze their dynamic trends, as illustrated in Figure 2. 

  
(a) Natural Gas Emissions                     (b) Oil Consumption 

  
(c) Coal consumption                          (d) Precipitation 
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(e) Average Temperature                     (f) Carbon Dioxide Emissions 

Figure 2. Dynamic Trends of Energy Consumption and Climate Factors (2012–2022) 

Additionally, due to potential registration errors in annual data reporting and insufficient 

disclosure of external information, detection and treatment of outliers in the dataset were necessary. 

This study employed the box-plot method to identify potential outliers, ultimately revealing 

significant anomalies in petroleum consumption and temperature data. 

The results are shown in Table 3 and Table 4. 

Table 3. Energy Consumption: Box-Plot Analysis Results 

Indicato

r 

Coal 

Consumption (million 

tons) 

Natural Gas Consumption (100 million 

cubic meters) 

Petroleum Consumption 

(million tons) 

Minimu

m 
7495.78 148.3 1960.5 

Mean 8993.069091 213.2190909 2524.736364 

Standar

d 

Deviati

on 

1733.557936 53.57017705 217.1218703 

First 

Quartile 

(Q1) 

7713.47 165.17 2428.6 

Sample 

Median 
7855.88 198.91 2579.7 

Third 

Quartile 

(Q3) 

11045.39 261.8 2689.1 

Maximu

m 
11872 288.9 2724.1 

 

 

 

 

 

 

 

 

 



Highlights in Science, Engineering and Technology ESMA 2025 

Volume 143 (2025)  

 

125 

Table 4. Climatic Factors: Box-Plot Analysis Results 

Indicator 
Annual Average 

Temperature (°C) 

CO₂ Emissions (million 

tons) 

Precipitation 

(mm) 
Temperature(°C) 

Minimum 16.37142857 34319.86571 20140.25 16.3714 

Mean 17.06727994 37494.34432 22632.93 17.1028 

Standard 

Deviation 
0.338635103 2284.886981 1810.797504 0.3465 

First Quartile 

(Q1) 
16.94642857 40870.69912 24838.2 17.0274 

Sample Median 17.04761905 36987.61763 22598.3 17.0476 

Third Quartile 

(Q3) 
17.38095238 35902.95336 21388.3 17.381 

Maximum 17.59365079 40870.69912 25996.25 17.5936 
 

3.1.3. Outlier Treatment 

This study employed two methodologies for outlier treatment: the Lagrange interpolation 

polynomial method and the moving average method. The Lagrange interpolation was applied to 

temperature anomalies, while the moving average addressed petroleum consumption outliers. 

(1) Lagrange Interpolation for Outlier Correction 

① Construct Lagrange Interpolation Polynomial: A polynomial was derived from known data 

points (excluding outliers) using the formula: 

𝐿(𝑥) = ∑(𝑦𝑖 ∗ 𝑙𝑖(𝑥))                             (5) 

Where yi represents the function values at known data points, and li(x)denotes the Lagrange basis 

polynomials. 

② Estimate Outlier Values: The anomalous data point (e.g., the 2014 value) was substituted into 

the polynomial to obtain an interpolated estimate, serving as a replacement or diagnostic reference. 

③ Replace Outliers: The estimated value was directly substituted for the outlier to ensure data 

continuity. 

(2) Moving Average for Outlier Correction 

① Determine Window Size: A window size was selected based on data characteristics and 

smoothing requirements. Larger windows enhance noise reduction but may obscure short-term trends. 

② Compute Moving Average: For each data point, the average of its neighboring values within 

the window was calculated using: 

𝑀𝐴𝑡 =
1

𝑘
∑ 𝑥𝑡=𝑖

𝑘−1

2

𝑖=−
𝑘−1

2

                             (6) 

Where k is the window size (odd integer). 

(3) Replace Outliers: 

The moving average value replaced the original outlier, preserving temporal coherence. 

3.1.4. Data Normalization 

Following outlier treatment, Min-Max normalization was applied to the post-processed datasets to 

eliminate dimensional heterogeneity and facilitate model computation. The procedure involved: 

Identify Minimum and Maximum Values: Determine the global minimum (xmin) and maximum 

(xmax) of the dataset. 

Normalize Data Points: Scale each data point xi to the [0,1] interval using: 

𝑥𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 =
𝑥𝑖−𝑥𝑚𝑖𝑛

𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛
                            (7) 

Map to Unified Scale: The normalized data, now dimensionless and uniformly scaled, enhance 

comparability and algorithmic efficiency in subsequent modeling. 
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The normalized datasets are summarized in Table 5. 

Table 5. Post-Normalization Dataset 

Indicato

r 

Coal 

Consumptio

n 

Natural Gas 

Consumption 

Petroleum 

Consumption 

Precipitatio

n 

CO₂ 

Emissions 

Temperatur

e 

2012 1 0.0334 0 0.5582 0.7841 0 

2013 0.9558 0 0.613 0.6718 0.9753 0.8377 

2014 0.8111 0.12 1 0.5753 1 0.8334 

2015 0.4097 0.1613 0.587 0.3133 0.6074 0.8261 

2016 0.3139 0.2366 0.6733 0.3492 0.5232 0.6702 

2017 0.0823 0.36 0.8109 0.3648 0.2913 0.5533 

2018 0 0.6309 0.7707 1 0 0.4988 

2019 0.0497 0.7545 0.9542 0.6312 0.2417 0.4705 

2020 0.0013 0.8073 0.8169 0.9658 0.1816 0.5367 

2021 0.0686 0.9751 0.9162 0.9649 0.2414 0.6049 

2022 0.071 1 0.986 0 0.4613 1 
 

3.2. Model Construction 

3.2.1. Polynomial Fitting 

For the normalized datasets, polynomial fitting was employed to establish relationship models 

between energy consumption and climate indicators. By fitting the data, nonlinear relationships 

between variables were explored. The fitting results were visualized using MATLAB’s plotting 

functions, as demonstrated in Figure 3. 

  
(a) Precipitation: Cubic Polynomial Fitting    (b) Average Temperature: Cubic Polynomial Fitting 
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(c) CO₂ Emissions: Cubic Polynomial Fitting 

Figure 3. Cubic Polynomial Fitting Curves for Climate Factors 

3.2.2. Linear Regression 

To investigate the relationship between energy consumption and climate indicators, this study 

employed multiple linear regression analysis, with coal, natural gas, and petroleum consumption as 

explanatory variables, and climate indicators (e.g., CO₂ emissions) as the dependent variable. Given 

that fossil fuels are primary contributors to CO₂ emissions, the regression model quantifies their 

collective impact on climatic variables. The sample period spanned 2012–2022, with climate 

indicators designated as dependent variables and primary energy consumption as predictors. 

The regression model is formulated as: 

𝑦 = 𝛽0 + 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝜀                         (8) 

y: CO₂ emissions (dependent variable); x1: Coal consumption; x2: Natural gas consumption; x3: 

Petroleum consumption; ε: Error term; βi (i =0,1,2,3): Coefficients estimated via the least squares 

method. Derive the equation: 

𝑦 = −0.1051 + 0.9055𝑥1 − 0.0558𝑥2 + 0.4108𝑥3                 (9) 

Regression Results (from MATLAB outputs): 

① Correlation coefficient: 0.9654 (indicating strong linear association); 

② F-statistic: 132.4563 >F0.95(4, 13) F0.95(4,13); 

③ p-value: 0.001 (< 0.05), confirming model significance. 

3.2.3. Pearson Correlation 

Building on the regression analysis, Pearson correlation coefficients were computed to assess 

pairwise relationships between CO₂ emissions and climate indicators: 

① CO₂ vs. Precipitation: r=−0.3616, suggesting a weak negative correlation; 

② CO₂ vs. Average Temperature: r=0.2106, indicating a negligible positive correlation. 

3.2.4. Granger Causality Test 

The Granger causality test was conducted to determine whether CO₂ emissions exhibit causal 

effects on temperature and precipitation. In this analysis, CO₂ emissions data with lag orders of 1, 2, 

and 3 were utilized to explore their temporal influence on climatic variables. 

The results, as shown inTable.6, indicate the statistical significance of lagged CO₂ emissions in 

predicting temperature variations. 
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Table 6. Granger Causality Test Results Between CO₂ Emissions and Temperature Under Varying 

Lag Orders 

Null Hypothesis Lags F-Statistic p-Value 

y does not Granger-cause x 
1 

1.5421 0.2495 

x does not Granger-cause y 16.1357 0.0039 

    

y does not Granger-cause x 
2 

7.3956 0.0240 

x does not Granger-cause y 38.9509 0.00036571 

    

y does not Granger-cause x 
3 

15.0389 0.0121 

x does not Granger-cause y 22.0017 0.0060 

Note: x: CO₂ emissions; y: Temperature 
 

The results confirm that CO₂ emissions are the Granger cause of annual temperature variations, 

implying that CO₂ emissions not only correlate with but also causally influence temperature trends. 

Subsequently, the Granger causality test was extended to examine the impact of CO₂ emissions on 

both temperature and precipitation. The outcomes for precipitation are summarized in Table.7. 

Table 7. Granger Causality Test Results Between CO₂ Emissions and Precipitation Under Varying 

Lag Orders 

Null Hypothesis Lags F-Statistic p-Value 

y does not Granger-cause x 
1 

-2.2172 1 

x does not Granger-cause y -4.1486 1 

    

y does not Granger-cause x 
2 

6.1366 0.0354 

x does not Granger-cause y 1.3067 0.3380 

    

y does not Granger-cause x 
3 

7.3273 0.0421 

y does not Granger-cause x 3.3088 0.1390 

Note: x: CO₂ emissions; y: Precipitation. 
 

Although CO₂ emissions were confirmed as the Granger cause of annual temperature variations, 

no causal relationship was identified between CO₂ emissions and precipitation. The Granger causality 

test results indicate that CO₂ emissions are not a Granger cause of precipitation changes, suggesting 

that while CO₂ emissions may influence temperature, their impact on precipitation is statistically 

insignificant. This implies that other climatic or anthropogenic factors may concurrently drive 

precipitation variability. 

4. Conclusion 

This study systematically investigates the dynamic interactions between fossil fuel consumption 

(coal, petroleum, natural gas) and climate indicators (temperature, precipitation, CO₂ emissions) in 

Sichuan Province from 2012 to 2022, integrating time series analysis and causal inference 

methodologies. Anomalies in energy and climate datasets were identified via boxplot analysis and 

corrected using Lagrange interpolation and moving average techniques. Polynomial fitting, multiple 

linear regression, Pearson correlation, and Granger causality tests were employed to model these 

relationships. Key findings include: 

Strong Energy-Carbon Linkage: Fossil fuel consumption exhibits a significant positive correlation 

with CO₂ emissions (correlation coefficient: 0.9654), with coal demonstrating the strongest driving 

effect (regression coefficient: 0.9055). 

Causal Impact on Climate: Granger causality tests confirm CO₂ emissions as a causal driver of 

temperature variation (lag order: 3, p-value <0.05), though no significant causal relationship with 

precipitation is observed. 
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Nonlinear Climate Responses: Weak positive correlation between CO₂ emissions and temperature 

(Pearson: 0.2106) and weak negative correlation with precipitation (-0.3616) suggest indirect climatic 

effects mediated through nonlinear pathways. 

To mitigate climate risks, Sichuan Province should prioritize accelerating its energy transition by 

scaling up renewable energy adoption, optimizing water resource management to address 

precipitation variability, and enhancing technological innovation to improve energy efficiency. While 

this study focuses on provincial-scale data over a decade, future research should extend to longer-

term and cross-regional analyses. Advanced modeling techniques, such as BP neural networks and 

deep learning, could further unravel the complex mechanisms of energy-climate interactions, 

providing refined decision-making frameworks for global climate governance. 
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