Advancements in Nanomaterial-Based Brain-Computer Interface Electrodes

Renxuan Zhao

The College, University of California, Los Angeles, California, 90095, United States of America

* Corresponding Author Email: haydenzhao@g.ucla.edu

Abstract. Brain-Computer Interfaces (BCIs) enable direct communication between the brain and external devices, but their performance heavily depends on the quality of the electrodes. Traditional materials, such as gold and platinum, offer high conductivity but often struggle with biocompatibility and can cause tissue damage due to their mechanical mismatch with neural tissue. While conductive polymers provide greater flexibility, they frequently fall short in electrical performance. Nanomaterials, including carbon nanotubes (CNTs) and graphene, are increasingly considered promising alternatives. These materials combine high conductivity with mechanical flexibility and offer potential improvements in biocompatibility, enhancing the capture and transmission of neural signals. Hybrid materials, which integrate conductive polymers with nanomaterials, have also shown potential by balancing flexibility and signal quality. This review examines recent advancements in nanomaterial-based BCI electrodes and focuses on how these new materials address the limitations of traditional electrodes. It also discusses emerging tools like metallic nanoparticles and nanowires, along with the ongoing challenges of biocompatibility, tissue integration, and ethical considerations. As nanotechnology continues to evolve, it has the potential to significantly enhance the functionality and longevity of BCIs, making them more effective in facilitating neural communication.

Keywords: Brain-computer interfaces, electrodes, nanomaterial.

1. Introduction

Brain-computer interfaces (BCIs) represent a rapidly advancing field of neurotechnology, enabling direct communication between the brain and external devices, bypassing conventional neural pathways. These systems hold tremendous promise for neuroproteins, rehabilitation, and cognitive enhancement applications. However, the success of BCIs hinges on the electrodes that interface with neural tissues.

Historically, metals like gold and platinum, along with conductive polymers, have been the materials of choice for electrodes due to their excellent electrical conductivity and ease of fabrication. Despite these advantages, such materials present significant challenges, including poor biocompatibility, mechanical stiffness, and the potential to trigger foreign body reactions that can compromise the electrode's long-term performance [1].

Given these challenges, there has been growing interest in incorporating nanomaterials into BCI electrodes. Carbon nanotubes, graphene, and conductive polymers with nanoscale architectures offer unique properties that make them particularly well-suited for neural interfacing. These materials provide exceptional conductivity and flexibility, allowing them to conform to the brain's intricate structure, which reduces the risk of tissue damage and enhances long-term biocompatibility [2,3]. Additionally, these nanomaterials offer improved resolution and stability in recorded neural signals, a crucial factor for maintaining high functionality in BCIs [4].

2. Carbon-Based Nanomaterials

2.1. Carbon Nanotubes (CNTs)

CNTs are tubular structures formed by rolling graphene layers and come in two forms: single-walled (SWCNTs) and multi-walled (MWCNTs) [5]. These materials are known for their high electrical conductivity, mechanical strength, and adaptability, which help maintain electrode stability

in the dynamic environment of the brain. CNTs have shown significant improvements over traditional metal electrodes by reducing impedance and enhancing signal integrity, both of which are critical for accurate neural recording and stimulation [6].

A major advantage of CNTs is their ability to closely interact with neural tissues due to their high aspect ratio and large surface area, which leads to improved signal [7]. This helps overcome one of the main limitations of conventional metallic electrodes, which often suffer from high impedance and poor signal quality. Moreover, the flexibility of CNTs allows them to conform more easily to the brain's complex structure, reducing the risk of tissue damage [3].

However, CNTs are not without challenges. One significant concern is their potential cytotoxicity. Although CNTs are generally considered biocompatible, some studies have shown that they can trigger inflammatory responses, particularly when fragments are released into surrounding tissues [8]. This issue has led to the development of surface modification techniques, such as coating CNTs with biocompatible materials, to reduce these risks and improve their long-term safety [9]. While CNTs represent a significant advancement in BCI technology, more research is needed to fully address concerns related to biocompatibility [2].

2.2. Graphene

Graphene has emerged as a leading candidate for BCI electrodes due to its unique two-dimensional structure and exceptional electrical properties. Unlike CNTs, graphene's planar structure allows for broader contact with neural tissues, which is essential for enhancing the stability and consistency of electrical signals between the brain and external devices. This makes graphene electrodes particularly effective for tasks requiring high spatial resolution, such as brain mapping and neural decoding [10].

Compared to CNTs, graphene offers additional benefits, such as greater flexibility and minimal thickness, enabling electrodes to conform more closely to the brain's surface. This reduces the likelihood of tissue damage, a common issue with stiffer electrode materials [11]. Furthermore, graphene's high electron mobility and conductivity support the development of high-density electrode arrays, which improves the accuracy of neural signal acquisition [12].

Nevertheless, graphene faces some of the same biocompatibility challenges as CNTs. While pure graphene is generally biocompatible, derivatives like graphene oxide can cause oxidative stress and inflammatory responses [13]. These issues have driven research into surface modifications and the creation of graphene-based composites that combine graphene's desirable properties with other biocompatible materials. These studies are crucial for ensuring the safe and effective use of graphene in neural interfacing technologies [14].

3. Metallic Nanomaterials

3.1. Gold Nanoparticles (AuNPs)

AuNPs have become central to the development of advanced BCI electrodes due to their excellent electrical conductivity, high chemical stability, and biocompatibility [15]. Integrating AuNPs into electrodes can increase surface roughness, which enhances the availability of active sites for neural signal transmission. This enhanced interaction at the surface allows for more sensitive detection of neural activity, thereby improving the fidelity of signal transmission compared to traditional electrodes [16].

Compared to carbon-based nanomaterials, the inertness of AuNPs makes them less prone to oxidation, reducing oxidative stress, a significant concern with materials like graphene oxide. This intrinsic biocompatibility makes AuNPs suitable for long-term implantation in neural tissues, lowering the risk of adverse reactions. AuNPs have been successfully applied in both invasive and non-invasive BCIs, with significant use in deep brain stimulation (DBS), where they enhance the accuracy and effectiveness of electrical stimulation in treating neurological disorders such as Parkinson's disease and epilepsy [17].

However, the high cost of gold and the tendency of nanoparticles to aggregate in vivo present challenges that limit the widespread use of AuNPs. Current research is focused on optimizing the size and surface chemistry of AuNPs to maintain their dispersity and functional activity [18].

3.2. Silver Nanoparticles (AgNPs)

AgNPs are another class of metallic nanomaterials valued for their high electrical conductivity and antimicrobial properties. AgNPs have been combined with polymer matrices to create flexible and conductive composites that can conform to the brain's contours, reducing issues associated with stiff metal electrodes. This increased flexibility offers better electrode-to-tissue contact, leading to more reliable signal acquisition [19].

Silver presents a more economically feasible alternative to gold, but it also has significant biocompatibility concerns. High concentrations of silver ions released from AgNPs can be toxic to cells, leading to cytotoxicity and inflammatory responses. These toxicity issues have prompted the development of strategies to control silver ions' release rate or coat AgNPs with biocompatible materials that reduce their reactivity while retaining their beneficial properties [20].

3.3. Platinum Nanoparticles (PtNPs)

Platinum nanoparticles (PtNPs) have been used less frequently than gold or silver nanoparticles, but they offer specific advantages that make them valuable in certain BCI applications. PtNPs are known for their remarkable catalytic properties, which can be harnessed in signal transduction and electrochemical sensing electrodes. Along with high conductivity, PtNPs exhibit chemical stability, allowing them to maintain performance in the brain's complex environment, where stability and reliability are essential [21].

In neurochemical sensing, PtNP-enhanced electrodes have been used to detect neurotransmitter levels in real-time, providing valuable information about the brain's chemical environment. This capability is crucial in research settings, where understanding neural activity and its relationship to behavior and disease is paramount. PtNPs have also been utilized in sophisticated neural prosthetics, where their catalytic properties enhance interaction at the electrode-tissue interface, increasing the sensitivity and longevity of the implant [22].

However, concerns about the potential cytotoxicity and high cost of PtNPs limit their widespread application in BCI technologies. Ongoing research is focused on mitigating these issues through surface modifications and the development of more cost-effective synthesis methods [23].

4. Hybrid Nanomaterials

4.1. Polyaniline (PANI) with Carbon Nanotubes (CNTs)

PANI is a conductive polymer widely studied for its environmental stability and ease of synthesis. When integrated with CNTs, PANI forms a composite that exhibits enhanced mechanical strength and flexibility due to the unique structure of CNTs. This combination results in a material with superior electrical conductivity and mechanical properties, making it an ideal candidate for BCI electrodes. Compared to CNTs alone, the PANI-CNT composite offers improved processability and mechanical integration with neural tissues while maintaining the high conductivity necessary for effective neural interfacing [24].

The PANI-CNT composite has been particularly effective in applications requiring both neural signal recording and stimulation. The high aspect ratio and large surface area of CNTs within the composite enhance the electrode's ability to closely couple with neural tissues, resulting in better signal capture and reduced impedance. This improvement is critical for neuroprosthetics and deep brain stimulation, where precise and reliable signal transmission is essential [25].

4.2. Poly 3,4-ethylenedioxythiophene (PEDOT) with Graphene

Another significant development in hybrid nanomaterials is the combination of PEDOT with graphene. PEDOT is known for its high conductivity and flexibility, which are further enhanced when paired with graphene's exceptional electrical properties. The resulting PEDOT-graphene composite offers improved conductivity, increased durability, and mechanical stability, making it suitable for high-performance BCI electrodes [26].

Compared to using graphene or PEDOT alone, the composite offers a synergistic effect, where the mechanical flexibility of PEDOT complements the high surface area and conductivity of graphene. This combination allows the composite to conform closely to the brain's surface, minimizing tissue damage and ensuring stable operation over extended periods. These composites are particularly useful in applications requiring long-term stability and high-resolution neural recordings, such as brain mapping and cognitive neural prosthetics [27].

4.3. Polypyrrole (PPy) with Gold Nanoparticles

PPy is another conductive polymer effectively combined with gold nanoparticles to create composites that exhibit enhanced electrical conductivity and mechanical strength. Including gold nanoparticles increases the surface roughness of the electrodes, providing more contact points with neurons, thereby improving signal specificity and reducing impedance. Compared to using gold or PPy alone, the composite offers a more balanced approach, combining the biocompatibility and conductivity of gold with the flexibility and processability of PPy [28].

This makes PPy-gold nanoparticle composites highly suitable for applications requiring precise neural signal recording, such as neural monitoring systems for patients with neurological disorders. Moreover, PPy-gold ensures reliable signal transmission even over long periods, which is crucial for developing durable and practical BCI systems [29].

5. Discussion

5.1. Overall Cross-Examination of Nanomaterial Categories

Carbon-based nanomaterials, particularly CNTs and graphene, are highly valued for their exceptional electrical conductivity and mechanical flexibility. These characteristics make them ideal for applications where electrode flexibility is critical to reducing tissue damage and maintaining long-term biocompatibility. For example, CNTs offer an unparalleled high aspect ratio and large surface area, which enhances signal capture and lowers impedance—crucial for precise neural recording and stimulation. However, the potential cytotoxicity and inflammatory responses remain significant hurdles that researchers continue to address through surface modification and functionalization strategies [30].

Metallic nanomaterials, such as AuNPs, AgNPs, and PtNPs, stand out due to their high electrical conductivity and chemical stability, making them particularly suited for applications where long-term stability and biocompatibility are paramount. AuNPs, for example, have been extensively used in BCIs due to their ability to enhance neural signal transmission through increased surface roughness, thus improving the sensitivity and fidelity of signal detection. Nevertheless, the high cost of gold and the potential cytotoxicity of silver nanoparticles limit their widespread use. The aggregation of metallic nanoparticles in vivo further complicates their application, necessitating ongoing research into more stable formulations and coatings to mitigate these issues [31].

Hybrid nanomaterials, which combine the properties of conductive polymers with either carbon-based or metallic nanomaterials, offer a balanced approach that leverages the strengths of each component. These materials are designed to integrate the high conductivity and mechanical flexibility of carbon-based materials with the stability and biocompatibility of metallic nanoparticles. For instance, composites like PEDOT-graphene or PANI-CNTs demonstrate improved electrical properties and durability while maintaining the flexibility necessary for conforming to the brain's

complex structure. This makes them promising candidates for long-term neural interfacing, although the complexity of these composites can present challenges in terms of consistent fabrication [32].

Currently, carbon-based nanomaterials are the most widely researched and have demonstrated substantial utility in BCI applications, particularly in contexts requiring high conductivity and flexibility. Metallic nanomaterials, especially gold nanoparticles, are more established in clinical applications due to their biocompatibility and stability, despite their higher costs. Hybrid materials, while still largely experimental, represent the future frontier of BCI electrode development, offering the potential to overcome the limitations of single-material systems by combining the best attributes of carbon-based and metallic components [32].

5.2. Ethical Considerations

The integration of nanomaterials into BCIs introduces several ethical considerations that must be addressed to ensure the responsible development and deployment of these technologies. Long-term safety is one such issue, as the full impact of nanomaterials on neural tissues over extended periods has yet to be fully understood. Materials like CNTs, graphene, and various metallic nanoparticles pose potential risks, such as cytotoxicity, inflammatory responses, and unforeseen interactions with biological systems. Ongoing research into the long-term biocompatibility of these materials is crucial to mitigating these risks and ensuring their safe use in clinical settings [33].

Informed consent is also critical, particularly when these technologies are used in vulnerable populations, such as patients with severe neurological disorders. It is essential that patients fully understand the potential risks and benefits of BCI implants, as well as the experimental nature of using advanced nanomaterials. Ensuring that patients provide informed consent based on a clear understanding of these factors is crucial to ethical practice [34].

Equitable access to BCI technologies is a growing concern, as the high cost and complexity of these advanced materials may limit their availability to a select few. As these technologies evolve, efforts must be made to ensure they are accessible to a broader population and to prevent exacerbating existing healthcare inequalities. This includes exploring cost-effective alternatives and developing scalable production methods for nanomaterials, which could help reduce costs and increase access to these life-changing technologies [35].

6. Conclusion

The application of nanomaterials in BCIs represents a significant advancement in neurotechnology, offering enhanced electrical conductivity, biocompatibility, and flexibility over traditional materials. Carbon-based nanomaterials like CNTs, graphene, and metallic nanoparticles such as gold, silver, and platinum have shown great promise in improving BCI electrode performance. These materials enhance the ability to capture and transmit high-fidelity neural signals while reducing the risk of tissue damage and inflammatory responses.

However, while the potential of these materials is clear, several challenges must be addressed. Long-term biocompatibility remains a critical issue, with ongoing research needed to fully understand the impact of nanomaterials on neural tissues over time. Additionally, further development of surface modification techniques and biocompatible coatings will be essential to mitigate any adverse biological responses and ensure the safe and effective use of these materials in BCIs.

Future research should also focus on developing more affordable and scalable production methods for nanomaterials to ensure broader access to these advanced technologies. Exploring cost-effective alternatives to expensive nanomaterials could contribute to more equitable access to BCI technologies. Furthermore, interdisciplinary collaboration will be critical in advancing this field, as it will require the combined efforts of neuroscientists, materials scientists, and ethicists to navigate the complex challenges associated with developing and deploying these technologies.

By continuing to explore the potential of nanomaterials in BCIs while addressing the associated challenges and ethical considerations, researchers can help ensure that these technologies are

developed and deployed to maximize their benefits and minimize risks. This approach will be crucial in realizing the full potential of BCIs to transform the lives of individuals with neurological disorders and beyond.

References

- [1] Boehler Christian, Oberueber Felix, Schlabach Sabine, et al. Long-term stable adhesion for conducting polymers in biomedical applications: IrOx and nanostructured platinum solve the chronic challenge. ACS applied materials & interfaces, 2017, 9 (1): 189-197.
- [2] Pavone Luigi, Moyanova Slavianka, Mastroiacovo Federica, et al. Chronic neural interfacing with cerebral cortex using single-walled carbon nanotube-polymer grids. Journal of Neural Engineering, 2020, 17 (3): 036032.
- [3] Wang Ming-Hao, Nikaido Kei, Kim Yechan, et al. Flexible cylindrical neural probe with graphene enhanced conductive polymer for multi-mode BCI applications. IEEE International Conference on Micro Electro Mechanical Systems, 2017: 502-505.
- [4] Liu Yaoyao, Xu Shihong, Yang Yan, et al. Nanomaterial-based microelectrode arrays for in vitro bidirectional brain–computer interfaces: a review. Microsystems & Nanoengineering, 2023, 9 (1): 13.
- [5] Assad Humira, Ashish Kumar. Carbon nanotubes (SWCNTs/MWCNTs) and functionalized carbon nanotubes in corrosion prevention. Corrosion prevention nanoscience: nanoengineering materials and technologies, 2023: 85-98.
- [6] Murakami Tatsuya, Yada Naoki, Yoshida Shotaro. Carbon Nanotube-Based Printed All-Organic Microelectrode Arrays for Neural Stimulation and Recording. Micromachines, 2024, 15 (5): 650.
- [7] Lee William, Parpura Vladimir. Carbon nanotubes as electrical interfaces with neurons. Brain Protection in Schizophrenia, Mood and Cognitive Disorders, 2010: 325-340.
- [8] Park Eun-Jung, Roh Jinkyu, Kim Soo Nam, et al. Biological toxicity and inflammatory response of semi-single-walled carbon nanotubes. PLoS One, 2011, 6 (10): e25892.
- [9] Bora Saumyadeep, Deep Pooja, Hitesh Kulhari. Applications of surface modified carbon nanotubes in drug delivery. Surface Modified Carbon Nanotubes Volume 2: Industrial Applications. American Chemical Society, 2022: 19-46.
- [10] Xu Boyu, Pei Jiahui, Feng Liefeng, et al. Graphene and graphene-related materials as brain electrodes. Journal of Materials Chemistry B, 2021, 9 (46): 9485-9496.
- [11] Lee Minseok, Lee Sangwon, Kim Jejung, et al. Graphene-electrode array for brain map remodeling of the cortical surface. NPG Asia Materials, 2021, 13 (1): 65.
- [12] Liu Shuangjie, Liu Ling, Zhao Yue, et al. A high-performance electrode based on van der waals heterostructure for neural recording. Nano Letters, 2022, 22 (11): 4400-4409.
- [13] Ou Lingling, Song Bin, Liang Huimin, et al. Toxicity of graphene-family nanoparticles: a general review of the origins and mechanisms. Particle and fibre toxicology, 2016, 13: 1-24.
- [14] Maughan Jack, Gouveia Pedro J, Gonzalez Javier Gutierrez, et al. Collagen/pristine graphene as an electroconductive interface material for neuronal medical device applications. Applied Materials Today, 2022, 29: 101629.
- [15] Im Jisun, Trindade Gustavo F, Quach Tien Thuy, et al. Functionalized gold nanoparticles with a cohesion enhancer for robust flexible electrodes. ACS Applied Nano Materials, 2022, 5 (5): 6708-6716.
- [16] Mohanaraj Sanuja, Wonnenberg Pauline, Cohen Brianna, et al. Gold nanoparticle modified carbon fiber microelectrodes for enhanced neurochemical detection. Journal of visualized experiments, 2019 (147): 1-18.
- [17] Chiang Ming-Chang, Yang Yu-Ping, Nicol Christopher JB, et al. Gold nanoparticles in neurological diseases: A review of neuroprotection. International Journal of Molecular Sciences, 2024, 25 (4): 2360.
- [18] Ozcicek Ilyas, Ayturk Nilufer Ulas, Aysit Nese. Histological changes in mice tissues induced by gold nanoparticles with different surface coatings and sizes. Experimental Biomedical Research, 2022, 5 (1): 73-87.

- [19] Jamali Abdul Rauf, Bhatti Jahanzeb, Khan Waseem, et al. Synthesis and Characterization of Silver Nanoparticle-Polydimethylsiloxane (Ag-NP-PDMS) Stretchable Conductive Nanocomposites. Crystals, 2022, 12 (8): 1098.
- [20] Perumalsamy Haribalan, Xiao Xiao, Kim Hyun-Yi, et al. scRNA-seq analysis discovered suppression of immunomodulatory dependent inflammatory response in PMBCs exposed to silver nanoparticles. Journal of Nanobiotechnology, 2024, 22 (1): 118.
- [21] Ramli Nurul Hidayah, Nor Noorhashimah Mohamad, Hakimi Asyraf, et al. Platinum-based nanoparticles: A review of synthesis methods, surface functionalization, and their applications. Microchemical Journal, 2024: 110280.
- [22] Zuo Yu, Wang Xiufang, Fan Lifang, et al. The fabrication of an electrochemical sensing interface based on Pt nanoparticles/MoS2/graphene nanocomposite for sensitive detection of binaphthol. International Journal of Environmental Analytical Chemistry, 2022, 102 (17): 4897-4908.
- [23] Abed Atena, Derakhshan Maryam, Karimi Merat, et al. Platinum nanoparticles in biomedicine: Preparation, anti-cancer activity, and drug delivery vehicles. Frontiers in Pharmacology, 2022, 13: 797804.
- [24] Anwar N, Niaz N A, Shakoor A, et al. The structural and electrical properties of polyaniline carbon nanotubes (PANI-CNTs) composite. Digest Journal of Nanomaterials & Biostructures, 2022, 17 (4): 1-13.
- [25] Vitale Flavia, Summerson Samantha R, Aazhang Behnaam, et al. Neural stimulation and recording with bidirectional, soft carbon nanotube fiber microelectrodes. ACS nano, 2015, 9 (4): 4465-4474.
- [26] Lee Seunghyeon, Eom Taesik, Kim Min-Kyoung, et al. Durable soft neural micro-electrode coating by an electrochemical synthesis of PEDOT: PSS/graphene oxide composites. Electrochimica Acta, 2019, 313: 79-90.
- [27] Gunapu DV Santhosh Kumar, Vanjari Siva Rama Krishna. Preparation of high charge storage capacity PEDOT/functionalized mwcnts hybrid nanocomposite for neural electrode applications. ECS Transactions, 2017, 77 (11): 1719.
- [28] Kojabad Zohreh Deljoo, Shojaosadati Seyed Abbas, Firoozabadi Seyed Mohammad, et al. Polypyrrole nanotube modified by gold nanoparticles for improving the neural microelectrodes. Journal of Solid State Electrochemistry, 2019, 23: 1533-1539.
- [29] Won Chihyeong, Jeong Ui-Jin, Lee Sanghyeon, et al. Mechanically Tissue-Like and Highly Conductive Au Nanoparticles Embedded Elastomeric Fiber Electrodes of Brain–Machine Interfaces for Chronic in Vivo Brain Neural Recording. Advanced Functional Materials, 2022, 32 (52): 2205145.
- [30] Peng Fei, Jeong Sinyoung, Ho Alexander, et al. Recent progress in plasmonic nanoparticle-based biomarker detection and cytometry for the study of central nervous system disorders. Cytometry Part A, 2021, 99 (11): 1067-1078.
- [31] Hellal F Ait, Andreazza-Vignolle C, Andreazza P, et al. Silver-platinum nanoparticles and nanodroplets supported on silica surfaces: Structure and chemical ordering. Journal of Alloys and Compounds, 2023, 961: 171080.
- [32] Xiang Dong. Carbon-based Conductive Polymer Composites: Processing, Properties, and Applications in Flexible Strain Sensors. CRC Press, 2023.
- [33] Subhan Md Abdus, Subhan Tahrima, Choudhury Kristi Priya, et al. Safety measures, regulations, ethical, and legal issues for nanomaterials, Handbook of Nanomaterials, 2024, 2: 791-828.
- [34] Klein Eran. Informed consent in implantable BCI research: identifying risks and exploring meaning. Science and Engineering Ethics, 2016, 22: 1299-1317.
- [35] Salamanca-Buentello Fabio, Daar Abdallah S. Nanotechnology, equity and global health. Nature Nanotechnology, 2021, 16 (4): 358-361.