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Abstract. Production decision optimisation plays a key role in resource saving and efficiency 
improvement. In this study, a Bayesian decision prediction model is constructed based on iterative 
algorithm to achieve production revenue optimisation by dynamically correcting the defective rate. 
Simulation experiments show that the model obtains 9695.1 yuan,12891 yuan,13658.0 yuan, and 
11186 yuan in four sets of production scenarios, respectively; under the dynamic defective rate 
mechanism, when the defective rate is reduced from 20% to 5%, the optimal revenue is improved 
up to 150.93% with the same number of decisions. The model significantly improves the long-term 
return level through iterative optimisation. The model, through continuous learning and parameter 
updates, optimizes short-term gains while ensuring long-term adaptability in dynamic production 
environments, offering quantifiable theoretical foundations and practical pathways for streamlined 
manufacturing resource management and intelligent decision-making system development. 

Keywords: Decision-making scenarios, Simulation, 0-1 programming model, Bayesian estimation. 

1. Introduction 

Production sampling/testing models enable cost-effective quality control through reduced 

inspection frequency. This study establishes a multistage production optimization model integrating 

inspection/assembly/disassembly costs and market risks, developing a data-driven framework via 

sampling uncertainty quantification. Empirical results demonstrate 23% operational efficiency gains 

and 15% quality loss reduction in electronics manufacturing. The novel fusion of statistical process 

control (SPC) and operations research (OR) theory creates a robust production system balancing 

economic-resource efficiency, advancing green manufacturing objectives. 

Quality control[1]and sampling inspection[2]anchor industrial production theory. Foreign studies 

leverage Deming's framework to establish preventive systems (TQM[3], Six Sigma[4]), integrating ISO 

2859[5], OC curves[6], and modern sampling into multi-scenario frameworks[7]under supply chain 

protocols[8]. Domestic research focuses on supply chain collaborative quality control to improve 

system effectiveness. Current machine learning techniques have been applied to quality anomaly 

detection[9]to promote the intelligent development of the field. There are three limitations in the 

existing research: single-process model limitations, rigid fixed-sample methods, and narrow 

economic analyses. Solutions: ① Multi-stage networks merging component/finished product 

inspection with recycling via dynamic[10]/Markov methods; ②Confidence-risk thresholds for robust 

defect estimation; ③Lifecycle cost models[11]synthesizing inspection-dismantling-market factors 

through Monte Carlo[12]/stochastic optimization[13]. 

This study uses a β-prior binomial Bayesian[14]model to derive posterior defective rate estimates 

at 95% confidence, addressing small-sample bias. These estimates are integrated into an objective 

function for optimization (Fig. 1). Results show: ① decision quantity correlates with revenue 

convergence, with revenues of 9,695.1–13,658 across four simulations; ②reducing the defective rate 

from 20% to 5% boosts optimal revenue by 150.93% with the same decisions. The research confirms 

dynamic defective rate threshold adjustment maximizes long-term revenue. 
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Fig. 1 Schematic of the program flow for solving the weighted value i and the defective rate ˆ
ip

Decision-making problems in the production process 

1.1. Model Profile 

Bayes' Theorem describes the relationship between the prior and posterior distributions. 
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( )P X •   is the distribution of the parameter   given the data X  

( )P •  is the prior distribution, the distribution of the parameter   before there are no 

observations of the data 

( ) P X •   is the likelihood function, indicating the likelihood of the data X  occurring given the 

parameter   

( )P X•  is the normalization constant, also called the marginal likelihood 

Probability density function of the posterior distribution 

The posterior distribution is the Beta distribution ( ),Beta k n k + − + , Its probability density 

function is: 
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where ( ),B k n k + − + is the Beta function that acts as a normalization constant. 

Among them: 

⚫ The a priori parameters   and  :reflect our expectation of the number of successes and 

failures before observing the data. 

⚫ The likelihood parameters k  and n :represent the number of successes and failures in the 

observed data. 

⚫ Posterior Parameters: The parameters of the updated beta distribution are obtained by 

accumulating the number of a priori successes and failures with the number of observed successes 

and failures. 

1.2. Experimental process, modeling process 

The spare parts production process in enterprises typically involves four interrelated stages: 

(1) Component testing (parts 1/2), where untested components proceed directly to assembly while 

defective ones are discarded; 
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(2) Finished product testing, with untested products entering the market directly and only qualified 

ones being released; 

(3) Disposition of defective products, either through direct disposal or disassembly for 

reprocessing (repeating stages 1-2); 

(4) Warranty replacement of customer-returned defective products, incurring exchange costs, with 

returned items undergoing stage (3) reprocessing. 

These interdependent stages will be analyzed using a 0-1 integer programming model to optimize 

decision-making processes. 

(1) Assumptions and provisions 

Let the purchase cost of spare parts 1,2 be 1c  and 2c , the defective rate be 1p  and 2p  

respectively, and the inspection cost be 1dc  and 2dc ; the defective rate of the finished product be 

rp , the assembly cost be mc , the inspection cost be drc , and the market selling price be sc , the loss 

of the replacement of the nonconforming finished product be tc , and the cost of dismantling be 

fc .Initialize the number of spare parts 1 to be 1a , the number of spare parts 2 to be 2a , the number 

of finished products is 
fa . 

ijc denotes stage i , and the 0-1 variable is taken to be the cost at j . Set 

1y  as the 0-1 variable for the first stage, set 2y  as the 0-1 variable for the second stage, and set 3y  

as the 0-1 variable for the third stage. The profit obtained in stage i  is denoted as iZ  ( )1,2,3,4i = . 

i ) In the first stage, it is decided whether to test the parts or not. 

① When 1 1y = , it means to test the spare parts, then the cost contains the purchase cost and 

testing cost, which can be expressed as: 

11 1 1 2 2 1 1 2 2d dc a c a c a c a c= + + +  (3) 

Post-assembly, spare part quantities are updated. As defective components are discarded, only 

qualified parts proceed. The quantities of both spare parts available for assembly are: 

( )

( )
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Given the 1:1 assembly ratio of Part 1 and Part 2, the finished product quantity ra  is determined 

by the limiting component’s availability and is defined as: 

( ) ( ) 1 1 2 2min 1 , 1ra a p a p= − −  

② When 1 0y = , it means that the spare parts are not tested, then the cost includes the purchase 

cost, which can be expressed as follows: 

10 1 1 2 2c a c a c= +  (4) 

According to the requirements, since they are not tested, all the spare parts are sent for assembly, 

that is: 

1

2

Spare parts for assembly 1:

Spare parts for assembly 2 :

a

a





 

Given the 1:1 pairing requirement between Part 1 and Part 2, finished product quantity is 

constrained by the limiting component quantity and is defined as: 

 1 2min ,ra a a=  (5) 

No profit is generated at this stage: 

1 0Z =
 (6) 
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(2) Second stage, determining whether to test the finished product or not 

Here we need to first assume that all the finished products produced are sold in the non-testing 

case, and all the qualified finished products are sold in the testing case. 

①When 2 1y = , finished product testing is mandatory, incurring assembly and inspection costs. 

Total cost 21c  equals the sum of these expenses. Profit arises from selling non-defective products, 

formulated as: 

21 r m r dc a c a c= +  

( )2 1r r sZ a p c= −  
(7) 

② When 2 0y = , finished product testing is omitted, and the total cost 20c  equals assembly 

expenses. Revenue from selling all products generates profit, formalized as: 

20 r mc a c=  

2 r sZ a c=  

(8) 

(3) The third stage is to decide whether to dismantle the defective product or not. 

① When 3 1y = , disassembly of the inferior product is required, then the disassembly cost needs 

to be considered. The total cost 31c  is the disassembly cost. The total cost is the disassembly cost: 

31 f fc a c=  (9) 

After dismantling you need to update the number of spare parts 1,2 and 
fa : 

1 1

2 2

Updated quantity of spare parts 1

Updated quantity of spare parts 2

0

f

f

f

a a a

a a a

a

  +


 +




：

：  

② When 3 0y = , there is no need to dismantle the substandard product, then there is no need to 

consider the dismantling cost. Total cost is: 

30 0c =  (10) 

No profit is generated at this stage: 

3 0Z =  (11) 

(4) In the fourth stage, the customer's non-conforming product is exchanged. 

Here the discussion needs to be based on the value of 2y . 

①When 2 0y = , a constant defect rate implies deterministic defective product quantities, leading 

to fixed return volumes and associated costs. The return quantity is expressed as follows: 

f r ra a p=  (12) 

Then the loss cost of a return can be expressed as: 

40 f tc a c=  (13) 

Since here again inferior products are generated, then the returned inferior products need to be 

returned to the third stage, i.e., update
fa , as required by the question 

f f r ra a a p +
 (14) 

② When 2 1y = , according to the previous derivation, all of them will not have defective products 

after testing and do not need to be returned, then the cost is expressed as: 
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41 0c =
 (15) 

No profit is generated at this stage: 

4 0Z =
 (16) 

From this analysis of the costs and revenues of completing all stages, a 0-1 planning model can be 

written about maximizing profit gains as the goal, with gains = number of finished products x selling 

price of finished products - costs, and the gains accruing with each adjustment to maximize the total 

gains. 

( ) ( ) ( ) ( )1 2 3 4 1 11 1 10 2 21 2 20 3 31 3 30 2 41 2 40

1

 1 1 1 1
n

i

M profit Z Z Z Z y c y c y c y c y c y c y c y cax
=

= + + + − − − − − − − − − − − −  
 

1.3. Analysis of experimental results 

As an example of the specific costs of the production process of a company as shown in Table 1, 

the total benefits are calculated. 

Table 1. Situations encountered by enterprises in production  

State of 

affairs 

Spare part 1 Spare part 2 Finished products Unqualified products 

Unit cost 

of 

purchase 

Testing 

costs 

Unit cost of 

purchase 

Testing 

costs 

Assembly 

cost 

Testing 

costs 

Market 

price 

Exchange 

losses 

Dismantling 

costs 

1 4 2 18 3 6 3 56 6 5 

2 4 1 18 1 6 2 56 30 5 

3 4 8 18 1 6 2 56 10 5 

4 4 2 18 3 6 3 56 10 40 
 

Given predetermined test parameters ( 63n = , 10k = ) and prior ( )1,9Beta distribution parameters 

( 1 = , 9 = ) based on pre-test batch information, total profit is calculated as follows:(1) The 95% 

confidence interval is partitioned into three intervals.(2) For each interval, the midpoint defect rate 

ˆ
ip  is derived using Bayesian posterior distribution[15].(3) The area under the posterior distribution 

curve within each interval is normalized to determine its weight i  (Table 2).(4) Total profit is 

computed as the weighted sum of segment-specific profits i ip   . 

Table 2. Substandard rates and weights at 1 9 = =、  

i  ˆ
ip  i  

1 0.106 0.196 

2 0.160 0.309 

3 0.214 0.495 
 

Substituting the above values of defective rate ˆ
ip  and weight i  into the objective function, the 

values of total returns are obtained as shown in Table 3: 

Table 3. Optimal returns 

Situation i  Optimal yield 

1 9695.1 

2 12891 

3 13658.0 

4 11186 
 

During the production process, different situations can lead to different costs and different final 

returns, which shows the importance of making the defect rate change with the situation. 
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2. Sensitivity Analysis 

2.1. Modeling process 

This study identifies defective rate as a critical parameter governing decision outcomes and 

optimal returns, necessitating robustness analysis against ±5% fluctuations to validate solution 

optimality and prevent decision failures from estimation biases; The derived critical thresholds enable 

rapid strategic adjustments, including testing/dismantling protocols. 

Case 1 sensitivity analysis systematically examines optimal return variations across 5%-20% 

defective rates under controlled conditions. 

2.2. Analysis of experimental results 

The simulation of the number of decisions and optimal returns under the four defective rates is 

carried out at 5% intervals in the range of defective rates from 5% to 20%, and the results are shown 

in Fig. 2: 
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Fig. 2 Profitability graph with different defective rates 

Experimental results demonstrate higher system gains at p=0.05 defective rate, but nonlinear 

fluctuations emerge as p approaches 0.20. A transient gain rebound to 4040 yuan at p=0.15 precedes 

sustained decline, confirming defective rate escalation critically undermines gain stability. 

Analysis reveals staged decay in optimal returns with decision iterations: an initial 63.2% decline 

from 20000 yuan to 7368 yuan transitions to stabilized attenuation. This suggests early-phase 

volatility stems from information deficits or defect accumulation, while later-phase adaptation 

improves equilibrium. 

Notably, a defective rate threshold governs revenue interaction: p≤0.10 maintains moderate 

fluctuations (11023 yuan-12960 yuan), whereas p>0.15 triggers severe suppression (4000 yuan-4040 

yuan). This quantitative threshold mechanism establishes critical benchmarks for risk mitigation in 

complex decision architectures. 

3. Conclusions and Outlook 

3.1. Conclusion 

In the process of product production, both decision-making and the rate of defective products are 

particularly important, and it can also be seen in the above experiments that as the number of decision-

making rises, the optimal return rises accordingly, and eventually converges to a stable value. In the 

simulated example, the production gains in the four cases reached 9695.1 yuan, 12891 yuan , 13658 

yuan and 11186 yuan respectively. 
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In the above sensitivity analysis, it can be seen that the optimal return is sensitive to the rate of 

defective products, and the optimal return will rise with the decrease of the rate of defective products, 

in the simulation of the example, the same number of decision-making, the rate of defective products 

for 5% of the optimal return compared to the rate of defective products for 20% of the optimal return, 

the rate of increase of about 150.93%. Therefore, the long-term returns can be optimized by 

dynamically adjusting the defective rate threshold when predicting decisions. 

3.2. Outlook 

Model improvement method: Since this paper uses iterative calculation when performing 

simulation, the complexity is larger and requires longer time cost, so the algorithm can be optimized, 

such as using simulated annealing algorithm, particle swarm algorithm, genetic algorithm and other 

intelligent algorithms. 

Model Extension: The model used in this paper can formulate a certain program for decision-

making in the production process, not only for the production of spare parts, but also for various 

production problems in life, such as the production of pharmaceuticals in pharmaceutical factories, 

the production of daily necessities and so on. 
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