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Abstract. Early and accurate identification of crop diseases and pests is critical to ensuring food 
security and sustainable agricultural development. The rapid advancement of high-resolution drone 
remote sensing technology provides innovative tools for early pest and disease detection. This paper 
explores the research progress, technical bottlenecks, and future directions of drone imagery 
technology in crop disease and pest monitoring. The study concludes that multi-spectral, thermal 
infrared and RGB sensors integrated on drone platforms can collaboratively capture centimeter-level 
high-resolution data. Through multi-source fusion of spectral, texture, and temporal data combined 
with lightweight model deployment, early spectral and morphological characteristics of crop stress 
caused by diseases and pests can be accurately identified, significantly improving detection 
accuracy compared to traditional satellite remote sensing and single machine learning methods. 

Case studies demonstrate that drone technology achieves 85%–95% recognition accuracy in 

monitoring typical diseases such as wheat rust and rice blast while reducing field inspection costs 
by over 60%. This paper provides a theoretical framework and technical roadmap for precision 
agriculture, offering practical significance for promoting agricultural digital transformation. 

Keywords: High-resolution drones; Crop diseases and pests; Multi-spectral remote sensing; Deep 
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1. Introduction 

Agriculture is the foundation of the national economy, and diseases and pests are major biological 

threats to food security and agricultural sustainability. According to the Food and Agriculture 

Organization (FAO), global crop yield losses due to diseases and pests reach 20%–40% annually, 

with economic losses exceeding $220 billion. In China, frequent outbreaks of rice blast, wheat scab, 

and other diseases in staple crops have become core challenges hindering the adoption of precision 

agriculture and green control technologies [1]. Traditional monitoring methods, such as manual field 

inspections and laboratory testing, suffer from inefficiency, high costs, and subjectivity, and often 

fail to achieve accurate identification during the latent or early stages of disease (e.g., abnormal leaf 

physiological indicators). Thus, developing efficient, non-destructive early monitoring technologies 

is crucial for achieving the plant protection goal of "prevention first, integrated management." 

In recent years, remote sensing technology has provided new pathways for agricultural disease and 

pest monitoring. While satellite remote sensing offers broad coverage, its spatial resolution 

(typically >10 meters) and revisit cycles (e.g., 16 days for Landsat) are inadequate for small-scale, 

time-sensitive farmland monitoring. In contrast, drone remote sensing, with centimeter-level 

resolution, flexible low-altitude flight capabilities, and multi-sensor collaboration, has emerged as a 

vital tool for agricultural management. Drones equipped with multi-spectral, hyperspectral, and 

thermal infrared sensors can capture physiological and biochemical parameters (e.g., chlorophyll 

content) and canopy structural changes, detecting stress signals before visible symptoms (e.g., lesions, 

wilting) appear. Studies show that high-resolution drone imagery can identify canopy temperature 

anomalies and spectral reflectance changes, significantly improving disease recognition accuracy and 

timeliness when combined with machine learning models [2]. For example, red-edge band (705–745 

nm) reflectance anomalies enable early warning of wheat powdery mildew 7–10 days in advance, 

with 92% accuracy [3]. Multi-spectral sensors and AI models automatically analyze rice leaf color, 

texture, and canopy temperature variations, improving pest (e.g., planthoppers) and disease (e.g., 
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sheath blight) detection efficiency by over fivefold compared to manual methods [4]. Spectral-

texture-temporal data fusion enhances model generalization, while thermal infrared imaging detects 

temperature anomalies caused by diseases (e.g., 2–3°C increase in wheat stripe rust-infected areas), 

achieving over 89% warning accuracy (2024 review). 

This paper explores the potential and technical advantages of drone remote sensing in agricultural 

disease and pest monitoring. It analyzes the principles and characteristics of drone remote sensing, 

details its applications in early diagnosis, real-time monitoring, and precision control, and discusses 

challenges and future directions to provide scientific and technical references for efficient agricultural 

management. 

2. UAV Remote Sensing Technology and Data Acquisition 

The application of drone imagery in early crop disease and pest identification relies on efficient, 

flexible data acquisition and multi-sensor collaboration. Drones equipped with hyperspectral, multi-

spectral, thermal infrared, and LiDAR sensors capture crop physiological and structural information 

from multiple dimensions. Hyperspectral sensors collect narrow-band reflectance spectra (400–2500 

nm), detecting subtle spectral changes caused by pests or diseases, such as increased red-band (650–

680 nm) reflectance due to chlorophyll decline or near-infrared (1450 nm, 1940 nm) anomalies from 

cellular damage. Multi-spectral sensors focus on visible (RGB) and near-infrared (NIR) bands, 

computing vegetation indices (e.g., NDVI, EVI) to assess crop health, offering advantages in speed 

and scalability. Thermal infrared sensors detect canopy temperature anomalies caused by metabolic 

disruptions (e.g., reduced transpiration), while LiDAR quantifies structural changes (e.g., lodging, 

canopy density). 

Flight planning is critical for data quality. Parameters such as altitude (50–150 m), overlap rate 

(70%-80%), and sensor settings (band range, exposure) must be optimized based on terrain, crop type, 

and monitoring objectives. Data acquisition should occur under stable lighting (10 AM–2 PM) and 

clear skies. Multi-source data synchronization ensures temporal-spatial consistency for fusion 

analysis. Real-time data transmission via 5G/IoT enables dynamic monitoring. Data formats vary by 

sensor: HDF/LAS for hyperspectral/LiDAR and GeoTIFF for multi-spectral/thermal. 

Quality control includes geometric correction (using GCPs or IMU) and radiometric calibration 

(using reference panels). Ground validation enhances accuracy. Advances in AI-driven autonomous 

flight, lightweight sensors, and edge computing enable real-time processing, supporting timely pest 

management. 

3. Case Studies 

Current research emphasizes the importance of multi-source data fusion and intelligent algorithms 

to improve the efficiency of agricultural disease monitoring and management. 

In terms of data collection, the use of multispectral sensors (such as Sentera Quad-M) can capture 

changes in chlorophyll decay through the red edge band (710–750 nm) and the near-infrared band 

(760–900 nm). In addition, thermal imaging devices (such as FLIR Tau2) can detect temperature 

anomalies, thereby increasing sensitivity to early diseases [5]. This diversity of data collection allows 

researchers to have a more comprehensive understanding of plant health and take timely intervention 

measures. 

In terms of algorithm application, traditional machine learning methods (such as support vector 

machine SVM combined with normalized vegetation index NDVI and gray level co-occurrence 

matrix GLCM texture features) achieved an accuracy of 87.4% in the identification of wheat stripe 

rust, but performed poorly in the detection of small pests, with a false negative rate of more than 25% 

[6]. To address these limitations, deep learning models have been introduced and have made 

significant progress. For example, the CBAM-enhanced version of YOLOv5s with channel attention 

mechanism achieved an average precision (AP@0.5) of 92.3% in corn borer detection , while U-
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Net++ combined with multispectral input achieved an intersection over union (IoU) of 0.81 in rice 

blast segmentation . The application of these deep learning methods not only improves the accuracy 

of detection, but also enhances the recognition ability of complex diseases. 

In terms of multi-source fusion, Li et al. fused LiDAR data with thermal imaging data, and 

successfully achieved an accuracy of 89.7% for cotton vascular dehydration disease by using the 

characteristics of canopy collapse and transpiration inhibition. This fusion of multi-source data not 

only improves the recognition accuracy of the model, but also provides a more comprehensive 

analysis perspective for different types of plant diseases. 

However, current research also faces many challenges. The universality of the model remains an 

issue that needs to be addressed. The F1-score variation rate in different regions ranges from 15% to 

30%, indicating that the performance of the model may be inconsistent under different environmental 

conditions. In addition, the need for real-time processing and robustness under environmental 

interference have not been effectively addressed. The existence of these problems limits the 

widespread application of intelligent algorithms in actual agricultural environments, and further 

research and technological breakthroughs are urgently needed. 

4. Limitations and Future Directions 

4.1. Existing Challenges 

Currently, many agricultural monitoring systems still rely on a single sensor (such as RGB 

cameras), which greatly limits the ability to extract multidimensional features. A single sensor cannot 

fully capture the health and growth characteristics of plants, so some key diseases or growth indicators 

may be missed. In addition, environmental noise (such as cloud cover) will lead to an increase in 

radiation errors, which studies have shown can reach 12% to 18%. This not only affects the quality 

of the data, but may also lead to decision-making errors, further increasing the difficulty of crop 

management. 

Under different crops and climate conditions, the performance of the model often drops 

significantly, with the F1-score dropping by 15% to 30%. This problem of insufficient generalization 

ability means that the model trained in a specific environment may not be effectively applied to other 

environments, thus limiting the widespread application of intelligent algorithms in agricultural 

management. How to improve the adaptability of the model so that it can maintain efficient 

recognition capabilities under various crops and climate conditions is one of the current challenges 

that need to be solved. 

The processing method that relies on cloud computing often leads to latency problems, and the 

processing time may exceed 6 hours, which is extremely unfavorable to real-time decision-making. 

In agricultural production, timely decision-making is crucial for disease prevention and crop 

management. This delay prevents farmers from responding quickly to potential threats, which may 

lead to serious economic losses. 

4.2. Future Research Directions 

Future research should focus on integrating satellite, drone, and ground Internet of Things (IoT) 

data to achieve spatiotemporal synergy. By combining different types of data sources, changes in the 

agricultural environment and the growth status of plants can be captured more comprehensively, 

thereby improving the accuracy and efficiency of monitoring. This multimodal perception will 

provide a richer information basis for agricultural management and help farmers make more scientific 

decisions. 

Develop lightweight models, using quantization techniques (such as FP32 to INT8), pruning, and 

knowledge distillation to adapt to embedded GPUs (such as Jetson Orin). This will significantly 

reduce the computational requirements of the model, enabling it to run in real time on edge devices, 

thereby reducing processing delays and improving decision-making speed. The application of edge 
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AI will make agricultural monitoring systems more flexible and efficient, able to quickly process data 

and respond on the spot. 

Embed plant pathology models (such as pathogen diffusion models) into deep learning frameworks 

to enhance the model's understanding of disease transmission mechanisms. The integration of this 

mechanism and data can not only improve the accuracy of the model, but also provide farmers with 

more detailed early warning information, helping them to intervene in the early stages of the disease. 

Establish technical standards and open data sets (such as "AgriPest-1M") and obtain policy support. 

This will provide researchers and developers with a unified reference framework and promote the 

exchange and cooperation of different research results. At the same time, open data sets will provide 

rich data resources for model training and verification, and promote the rapid development of smart 

agricultural technology. Through standardization, the entire industry will be able to share and use 

data more effectively, thereby accelerating the process of agricultural intelligence.. 

5. Conclusion 

This paper reviews the application of high-resolution drone imagery in early crop disease and pest 

identification. Drone-based multi-sensor systems enable multi-source data fusion and lightweight 

models to capture early stress features, achieving 85%–95% accuracy and reducing inspection costs 

by 60%. Challenges include data quality, model generalization, and latency. Future work should focus 

on multi-modal sensing, edge AI, mechanism-data fusion, and standardization to advance precision 

agriculture and sustainable development. 
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