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Abstract. Image style migration, exploring the transformation of visual styles from one image to 
another, has become a focal point in computer vision research. The semantic and stylistic features 
of images are difficult to express directly through mathematical models, which greatly increases the 
difficulty of image stylization. Fortunately, approaches based on deep learning have shown promise 
in extracting deep semantic information from images, facilitating notable advancements in image 
style transfer. However, achieving a balance between content preservation and style transformation 
remains a formidable challenge. This paper introduces a neural style transfer network (NSTN) that 
aims to maintain image semantics while performing style transfer effectively. The NSTN framework 
comprises a process block, a style block, and an ascension decoder, working in concert to achieve 
nuanced style shifts while preserving the content integrity. Implementation results on the WikiArt and 
COCO datasets demonstrate the model's effectiveness in achieving a harmonious balance between 
content preservation and style integration. 
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1. Introduction 

The field of neural style transfer, which bridges artistic creativity with technological innovation, 

aims to democratize art by applying the styles of historic artworks to contemporary images. This 

fusion not only seeks to make artistic expression more accessible but also presents significant 

technical challenges, such as blending different artistic styles while preserving the content's integrity. 

Gatys et al.'s pioneering work on utilizing Convolutional Neural Networks (CNNs) for this purpose 

laid the foundation for this area of study, showing the potential for technology to capture and replicate 

the essence of artistic styles [1]. 

Further research has aimed to refine these techniques for greater efficiency, quality, and 

accessibility. For instance, Li et al. provided a novel interpretation of neural style transfer, framing it 

as a domain adaptation problem, which deepened the understanding of how styles are represented and 

transferred. Jing et al.'s comprehensive review offered a taxonomy of the current algorithms, 

facilitating a more profound comparative analysis of these methods [2, 3]. 

Innovations such as Direction-aware Neural Style Transfer by Wu et al. addressed the production 

of more natural and vivid stylizations by focusing on stroke direction during the style transfer process 

[4]. Depth-aware Neural Style Transfer, introduced by Liu et al., incorporates depth preservation to 

ensure the maintenance of image layout and semantic content, enhancing the technique's capability 

[5]. 

The exploration of neural style transfer has continued to evolve, with research delving into various 

aspects and challenges of the technique. Gatys et al. extended their work to include controlling factors 

in neural style transfer, allowing for more precise manipulation of spatial location, color, and scale, 

thereby improving stylization control and quality [6]. The study on Stereoscopic Image Style Transfer 

by Gong et al. introduced a method for applying style transfer to stereoscopic images while 

maintaining view consistency, which is crucial for a comfortable visual experience [7]. 

The importance of maintaining structural integrity in the style transfer process was highlighted by 

Cheng et al., who introduced Structure-Preserving Neural Style Transfer, focusing on preserving 

global structures and local details of the images [8]. Moreover, efforts to enhance texture details and 

maintain directionality in stylized images were furthered by Wu et al. in their work on Direction-

aware Neural Style Transfer with Texture Enhancement [9]. 
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A Review on Neural Style Transfer by Li et al. provides a comprehensive overview of NST 

methods, shedding light on both image- and model-optimization-based methods and their applications, 

underscoring the vast potential and ongoing development in NST research [10]. Further extending 

the application of NST, Shibly et al. proposed an advanced artistic style transfer method that 

efficiently reduces style and content loss during the transfer process, marking a significant 

improvement in NST efficiency and speed [11]. 

 
(a) Neural Style Transfer Network 

 
(b) Process Block          (c) Encoder with Attention Block    (d) Deep FNN(CNN) Block 

Figure 1. The overall flowchart of the NSTN, which details the structure of the model network. 

In the realm of neural style transfer, expressing style characteristics involves capturing the overall 

information of an image, which necessitates understanding the long-distance dependencies between 

pixels. Traditional convolutional neural network (CNN)-based methods for feature extraction are 

hampered by their small receptive fields, due to the limited size of convolution kernels, making it 

challenging to establish long-range semantic associations. While stacking deep neural networks can 

increase the receptive field, this approach suffers from low computational efficiency. To address this 

issue, our paper leverages the transformer architecture as the foundation to propose a neural style 

transfer network (NSTN). This model integrates key modules: Degenerate Encoder, Deep 

Feedforward Neural Network Block (DFB), Encoder with Self-Attention Block (ESAB), Style Block, 

Deep CNN Block (DCB), and Ascension Decoder. Each serves crucial functions, including 

dimensionality reduction, content analysis, semantic integrity maintenance, feature fusion, 

refinement, and final reconstruction, ensuring effective style transfer while preserving content's 

semantic meaning. 

The effectiveness of our approach is supported by experimental results. Utilizing a varied dataset 

that spans a broad spectrum of artistic styles, from the subtle hues of Impressionism to the stark 

geometric shapes of Cubism, our model exhibits an exceptional capability to replicate these styles 

accurately on content images. These experiments underscore the model's adeptness at capturing the 

nuances of different art genres, facilitating transformations that retain the content's core while 
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embodying the distinctive visual language of the target style. Our experiments, conducted on datasets 

such as the Architecture dataset [12] and MS-COCO [13], yielded positive results, demonstrating the 

model's efficiency in preserving semantic information of images while adeptly performing style 

transformations. 

2. Method 

To solve the problem of long-distance dependence of the image as well as to maintain the image 

positional integrity by using the self-attention mechanism, we sample the original image for 

dimensionality reduction and input it into the model. Inputting a content image 𝐼𝑐 ∈ ℝ𝐻×𝑊×3 and 

inputting the feature image 𝐼𝑠 ∈ ℝ𝐻×𝑊×3 when creating the model.  

The overall flow chart is shown in Figure1. We take the image for input, dimensionality reduction 

and spreading in Degenerate Encoder. After that, two 1D vectors are obtained by fully extracting the 

image features through Deep FNN Block and Encoder with Self-Attention Block. The two vectors 

are directly concatenated into the style block for further style transformation, and then reshaped into 

the image shape by Encoder with Self-Attention Block and learnt by Deep CNN Block. Finally, the 

image is reshaped by Ascension Decoder. 

2.1. Process Block  

2.1.1. Degenerate Encoder 

We used 6 CNN layers to convolve the input image, where each block contains 2 layers of 

3 × 3Conv and 1 layer of 3 × 3Conv with a step size of 2. A total of 2 blocks samples the original 

image to 𝐼 ∈ ℝ
𝐻

4
×

𝑊

4
×16

. The last layer selects a smaller convolution kernel to avoid spreading the flat 

tensor to be too large. After that we flatten it to 1 dimension 𝐼 ∈ ℝ1×(𝐻×𝑊)  and input it to the 

network. 

2.1.2. Deep FNN Block (DFB) 

To deeply understand the image content, we use a deep fully connected feedforward neural 

network (FNN) and connect them residually. Using this structure allows deeper learning of the 

information inside the image and alleviates the problem of difficult gradient propagation in deep 

networks. For the input 2-dimensional image X, we perform this calculation: 

𝑋′ = ℱ𝐹𝑁𝑁(𝑋′′)                               (1) 

𝑋 = ℱ𝐹𝑁𝑁(𝑋′) + 𝑋′′                             (2) 

Layer normalization (LN) is applied after each block [14]. 

2.1.3. Encoder with Self-Attention Block (ESAB) 

We try to dynamically focus on different parts of the input image using the self-Attention 

mechanism. And for content image and style image, we used two different encoders to get their 

features. 

For the input data 𝑍 ∈ ℝ1×𝑛(𝑛 = 𝐻 × 𝑊) , we begin by conducting self-attention following 

dimensionality reduction accomplished by a fully connected feed-forward neural network. Within the 

self-attention mechanism, we incorporate a multi-head self-attention module along with a fully 

connected feed-forward neural network. We create three feed-forward layers 𝑊𝑞 , 𝑊𝑘, 𝑊𝑣 ∈

ℝ𝑛×(𝑛×𝑠𝑒𝑞), 'seq' represents the length of the input sequence, which is used to derive the query (Q), 

key (K), and value (V) components: 

𝑄 = 𝑍 × 𝑊𝑞 , 𝐾 = 𝑍 × 𝑊𝑘 , 𝑉 = 𝑍 × 𝑊𝑣                      (3) 
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In that case the shape becomes ℝ1×(n×seq), after that reshape K, Q, V ∈ ℝseq×heads×depth, where 

depth =
n

heads
, the seq dimension and heads dimension are then transposed for the inner product 

calculation ℝheads×seq×depth. The attention (ATT) is implemented as follows: 

𝐴𝑇𝑇 =
𝑆𝑜𝑓𝑡𝑀𝑎𝑥(𝑄×𝐾𝑇)

√𝑑𝑒𝑝𝑡ℎ
× 𝑉                            (4) 

Now, convert back the seq and heads dimensions of ATT, reshape it back to ℝ1×(𝑛×𝑠𝑒𝑞), and use 

2 layers of FNN to get the output: 

𝑜𝑢𝑡𝑝𝑢𝑡 = ℱ𝐹𝑁𝑁(𝐴𝑇𝑇) + 𝑍                           (5) 

For each layer dropout and LN are used [14]. 

2.2. Style Block 

For the above block, we got two feature vectors 𝐼 ∈ ℝ1×𝑛 after using Process Block for each 

input image. Next the following calculations are performed on the two vectors: 

𝑍′ = 𝐶𝑜𝑛𝑐𝑎𝑡(𝑍𝑐𝑜𝑛𝑡𝑒𝑛𝑡, 𝑍𝑠𝑡𝑦𝑙𝑒)                          (6) 

𝑍 = ℱ𝐹𝑁𝑁(𝑍′)                                 (7) 

ℱ𝐹𝑁𝑁  outputs a layer of vectors with the shape 1 × (
𝐻

4
×

𝑊

4
× 16)  and then after passing it 

through a DFB and ESAB reduces it to the shape 𝐼 ∈ ℝ
𝐻

4
×

𝑊

4
×16

 as input to the model. 

2.2.1. Deep CNN Block 

Like Deep Embedding Block, here the FNN layer is replaced with a Conv layer, which is 

calculated as follows: 

𝑋′ = ℱ𝐶𝑜𝑛𝑣(𝑋′′)                               (8) 

𝑋 = ℱ𝐶𝑜𝑛𝑣(𝑋′) + 𝑋′′                             (9) 

After each block there is an Instance Normalization, which is normalized for each pixel of the 

channel. We have used 5 layers of Deep CNN Block for deep mining the features of synthetic images. 

2.3. Ascension Decoder 

In contrast to Degenerate Encoder, each block of this decoder uses 1 layer of 2×2UpSampling2D 

and 2 layers of 3×3Conv, for a total of 2 blocks, and the last layer reduces the image to the original 

image size 𝐼𝑜 ∈ ℝ𝐻×𝑊×3 using 3 convolution kernels. 

2.4. Loss Function 

For the image stylistic migration model, considering the need to maintain the overall style of the 

original image, but also the need to learn the color stroke style of the stylistic image and so on. So, 

we used two loss functions corresponding to content loss ℒ𝑐 and style loss ℒ𝑠, and multiplied by 

different weights to adjust whether the overall image is closer to the content image or the style image. 

For ℒ𝑐 , we created the loss function based on the shallow {block1_conv1, block2_conv1} of 

VGG19, which is calculated as follows: 

𝑀𝑆𝐸(𝐼𝑐𝑖
, 𝐼𝑜𝑖

) =
1

𝑀𝑖
∑ (𝐼𝑐𝑖𝑗

− 𝐼𝑜𝑖𝑗
)2𝑀𝑖

𝑗=0                       (10) 

ℒ𝑐 =
1

𝑁𝑙
∑ 𝑀𝑆𝐸(𝜙𝑖(𝐼𝑐), 𝜙𝑖(𝐼𝑜))

𝑁𝑙
𝑖=0                        (11) 
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Where 𝜙𝑖(·) denotes the features extracted from the i-th layer of the pre-trained VGG19, 𝑁𝑙 is 

the number of layers, 𝑀𝑖 is the number of elements of the features in the i-th layer, and 𝐼𝑐𝑖𝑗
 as well 

as 𝐼𝑜𝑖𝑗
 is the j-th element in the i-th layer. 

For ℒ𝑠, we chose the backward level {block1_conv2, block2_conv2, block3_conv3, block4_conv3} 

in each block of VGG19 and included all the blocks, to ensure that we can learn the painting style of 

the style image while also learning the more abstract part of the style image, and the following is the 

computation method: 

ℱ𝑖(𝐼) = 𝐹𝑙𝑎𝑡𝑡𝑒𝑛(𝜙𝑖(𝐼))                           (12) 

𝐺𝑟𝑎𝑚(𝐼) =
𝐼𝑇×𝐼

𝑊×𝐻
                               (13) 

ℒ𝑠 =
1

𝑁𝑙
∑ 𝑀𝑆𝐸 (𝐺𝑟𝑎𝑚(ℱ𝑖(𝐼𝑐)), 𝐺𝑟𝑎𝑚(ℱ𝑖(𝐼𝑜)))

𝑁𝑙
𝑖=0                   (14) 

In this context, ℱ𝑖(·) denotes flattening the features extracted from the i-th layer of the pre-trained 

VGG19 into one-dimensional space. 𝐺𝑟𝑎𝑚(·) denotes computing the inner product of the vectors, 

which is the Gram matrix, and then normalize. 

ℒ = 𝜆𝑐ℒ𝑐 + 𝜆𝑠ℒ𝑠                              (15) 

Where 𝜆𝑐 and 𝜆𝑠 are custom hyperparameter weights. 

3. Experiments 

3.1. Experimental condition 

3.1.1. Dataset 

In our experiments, we used two main datasets: the content dataset and the style dataset. The 

content dataset consists of the Architecture dataset [12] as well as some of the images in MS-COCO 

[13], which is a dataset containing a variety of architectural photographs. This dataset was chosen for 

its diversity of scenes and objects, which provides a comprehensive basis for assessing content 

preservation. The Style dataset consists of a selection of paintings from the WikiArt dataset [15], 

representing a variety of art styles, including Impressionism, Cubism, and Abstract Art. 

3.1.2. Weights and hyperparameters setting 

We employed a batch size of 8 and configured both DFB and DCB with 5 layers to facilitate 

complex feature interactions. Conversely, ESAB was designed with a more streamlined 2-layer 

architecture to emphasize efficient attention-driven feature synthesis. Training utilized the Adam 

optimizer [16], iterating 18,400 times per style map to refine the nuances of each artistic influence. 

Each CNN layer was outfitted with 128 filters, ensuring a detailed and robust feature extraction 

process. The loss function weights were carefully chosen, with a content loss weight of 4 and a style 

loss weight of 0.4, to ensure a balanced representation of content and style. 

3.1.3. Training time 

We trained each of our different style map models for 2 hours on NVIDIA GeForce RTX 4090 

GPUs. 

 



Highlights in Science, Engineering and Technology IPIIS 2025 

Volume 145 (2025)  

 

38 

 

Figure 2. An image that combines the contents of a photograph with the styles of several famous 

works of art. A Blue Kingfisher standing on a branch is shown in A. For each image, the style map 

is in the upper right corner of the converted image. B "The Starry Night" by Vincent van Gogh, 

1889. C "Composition 10 in Black and White" by Piet Mondrian, 1915. D "The Scream" by Edvard 

Munch, 1893. E "Woman in Hat and Fur Collar" by Pablo Picasso, 1937. F "Woman with a Hat" by 

Henri Matisse, 1905. 

3.2. Results 

Figure 2 presents the results of our experiments through a series of striking images that juxtapose 

the original content images and the adapted images of six different styles extracted from our curated 

stylistic dataset. The contrasting visualization highlights the model's ability to retain the essence of 

the original content while seamlessly integrating the unique stylistic elements of each of the chosen 

art forms. The transformations vividly demonstrate the model's ability to navigate and embody the 

intricate nuances of art, ranging from the subtle interplay of light and color characteristic of 

Impressionism to the obvious geometric distortion’s characteristic of Cubism. The transformation of 

each image clearly demonstrates the model's ability to master and translate complex artistic 

conventions in the process of stylistic transitions. 

3.3. Limitations 

3.3.1. Large number of participants 

The experimental model architecture is characterized by a fairly large number of parameters, 

which in turn requires the use of large amounts of graphics processor (GPU) memory, particularly 

video memory (VRAM), during the training and inference phases. This VRAM density increases the 

demand for computational resources and inherently limits the availability of the model with advanced, 

high-end GPU capabilities. As a result, the availability of the model may be reduced for users without 

such resources, potentially narrowing its utility and application scope. In addition, this limitation may 

also pose a significant challenge in scaling up the model for batch image processing or real-time 

applications, which require not only high-speed processing but also optimized memory management 

to ensure responsiveness and efficiency. 

3.3.2. Insufficient detail textures 

The model exhibits significant deficiencies in replicating detailed textures, which is particularly 

noticeable when complex patterns and nuances are important aspects of the content image. The 

stylization process appears to ignore these subtle details, resulting in a translated image that lacks the 
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depth and clarity of the original image. This limitation suggests that the feature extraction capabilities 

of the neural network may overgeneralize, in which case the emphasis on broader stylistic strokes 

may mask the need for finer texture fidelity. As a result, this may reduce the applicability of the model 

to detail-demanding tasks such as digital art creation or detailed visual content generation. 

4. Conclusion 

In this work, we explored the application of deep learning in the domain of image style transfer, 

particularly focusing on the impacts of simple network aggregation and self-attention mechanisms on 

this process. We carried out a thorough analysis of the style transformation process by combining 

deep stacked fully connected networks (FNNs), convolutional neural networks (CNNs), and self-

attention mechanisms, with a focus on striking a balance between content preservation and style 

integration. Each module is designed to serve crucial functions within the style transfer process 

dimensionality reduction, deep content analysis, maintaining semantic integrity, feature fusion, 

refinement, and final reconstruction. Through experimentation, our model was able to replicate a wide 

range of artistic styles, from the subtle tones of Impressionism to the bold geometric shapes of Cubism, 

proving its ability to maintain the essence of the content while reflecting the unique visual language 

of the chosen style. 

Despite limitations related to the requirement for substantial GPU memory and insufficient detail 

texture replication, this study contributes a novel approach to the development of neural style transfer 

technology. By combining deep networks and self-attention mechanisms, our method has shown 

potential in achieving style transformations while preserving image content, also highlighting 

directions for future work, including reducing the model's dependency on high-end GPU resources, 

improving the precision of texture replication, and further enhancing the accuracy and naturalness of 

the style transfer process. 
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