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Abstract. In this paper, several main approximate methods are discussed, including variational 
principle, Hartree-Fock method, configuration interaction method, quantum Monte Carlo method and 
parametric perturbation method. These methods solve the complexity of electron-electron correlation 
and interaction from different angles, and each has its advantages and disadvantages. The 
variational principle estimates the upper limit of ground state energy by testing the wave function, 
which effectively captures the electron correlation. Hartree-Fock method uses the mean field 
approximation to simplify the calculation but ignores the dynamic correlation. The quantum Monte 
Carlo method provides high-precision results through random sampling where other methods do not 
perform well, while the configuration interaction method further improves the Hartree-Fock results 
by considering multiple electron configurations. The parametric perturbation method performs well 
in iterative approximation, and its calculated results are close to the experimental values. At the end 
of this paper, the advantages of variational method are analyzed, and how to solve the ground state 
of helium atom by optimizing the wavefunction and minimizing the energy is shown, which provides 
theoretical and practical support for the development of materials science and quantum mechanics. 
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1. Introduction 

Erwin Schrödinger introduced the concept of the wavefunction in 1926 through his famous 

Schrödinger equation, which provides a framework for describing quantum systems. Since then, the 

study of real materials required solving the multi-atom problem. It consists of many interacting 

particles, such as the massive electrons. Helium atom is an example of interacting particles problem, 

and it is unsolvable problem till nowadays even there are only two electrons in the atom. 

The ground state problem of the helium atom is one of the classical many-body problems in 

quantum mechanics [1]. Its complexity stems from the fact that there are two electrons and the nucleus 

in the system, as well as the interaction between electrons, rather than the interaction between a single 

electron and the nucleus like the hydrogen atom. The motion of two electrons is closely related and 

cannot be simply regarded as the motion of independent single electrons. By studying these 

interactions, scientists can predict phenomena such as chemical bonding, electronic structure, and 

energy levels, which are essential for developing new technologies, materials, and understanding 

natural processes [2]. 

At present, the mainstream methods for solving helium atoms are roughly the following: 

variational principle, independent electron approximation, perturbation method, Hartree-Fock (HF) 

method, configuration interaction (CI), quantum Monte Carlo (QMC), and parameterized 

perturbation method. They have their own application scenarios and advantages and disadvantages. 

For such methods, the parameterized perturbation is used by an article which calculated fourth order 

approximate energy of the ground state and improves the accuracy of calculation result [3]. Compared 

with the previous studies of using only zero-order or first-order approximation, the fourth-order 

approximation can more accurately describe wavefunction and energy of the ground state of helium 

atoms [4, 5] Another powerful method is variation principle that uses a test function consisting of two 

ground state wavefunctions of hydrogen atoms and it is used to estimate the ground state energy of 

helium atoms by the variational principle. The value obtained by the variational principle is closer to 

the experimental value than the initial estimate. 
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In this article, the author will introduce the mainstream methods of the solution to the ground state 

of helium atom and give their respective applicable scenarios. After that, it will talk about each 

solution method for solving the ground state of helium atom in section 2, then it will give the results 

of computation in section 3. Furthermore, the author is going to focus on the variational method, 

introduce the trial wavefunction solution, and apply it to the helium atom. In this sense, the author 

will explain where it is improved compared with other methods and explain why the variational 

principal method is chosen. Finally, there is a summary in the last section. 

2. Solving Methods 

It is very challenging of solving the ground state of helium atom, rather than the hydrogen atom, 

as it involves a three-body problem. Two electrons interacting with the nucleus and with each other 

via the Coulomb force. The approximation is the core step for solving the three-body problem, 

because the Schrödinger equation for helium cannot be solved exactly [6]. Below are the common 

methods of getting the approximation value.  

For the approximation, one needs to guess a function which is called trial wavefunction, and it is 

used to estimate the properties of a quantum system, particularly the ground state energy. It serves as 

a starting point for calculations when the exact wavefunction of the system is unknown. 

2.1. Variational Principle 

In quantum mechanics, this principle offers an approximate method for determining the ground 

state energy of a quantum system. It relies on the concept that any chosen trial wavefunction will 

yield an energy value that serves as an upper limit for the actual ground state energy [7] 

E[ψtrial] = ⟨𝜓𝑡𝑟𝑖𝑎𝑙|𝐻|𝜓𝑡𝑟𝑖𝑎𝑙⟩ ≥ 𝐸0 (1) 
If H is the Hamiltonian of the quantum system,  ψ𝑡𝑟𝑖𝑎𝑙 is a normalized trial wavefunction and 

it is not necessarily the true wavefunction. The equality holds only if ψ𝑡𝑟𝑖𝑎𝑙 is true ground state 

where 𝐸0 is the exact ground state energy. To guess a reasonable ground state wavefunction, the 

way is often incorporating parameters to account for electron-electron correlation, for 

example ψ(𝑟1, 𝑟2) = 𝑒−α(𝑟1+𝑟2). 

2.2. Hartree-Fock Method 

Solving the Schrödinger equation for many-electron systems, the HF method is another tool that 

gives a more accurate value. It simplifies the problem by approximating the wavefunction as a single 

Slater determinant, capturing the antisymmetry of the wavefunction while neglecting explicit 

electron-electron correlation. 

The total wavefunction of a system 𝑁  interacting electrons is approximated as a single 

determinant of one-electron orbitals (spin-orbitals). Each electron interacts with the average field 

created by the others. The goal is to find the best set of one-electron orbitals that minimize the total 

energy of the system. 

2.3. Quantum Monte Carlo method 

The QMC methods use stochastic sampling to approximate the ground state energy. It mainly has 

two techniques for the approximation such as variational Monte Carlo (VMC). It combines the 

variational principle with Monte Carlo integration to compute the energy for a trial wavefunction. 

And diffusion Monte Carlo (DMC) which Improves upon VMC by using imaginary-time propagation 

to project out the ground state of the system. These techniques of QMC are computationally intensive 

but highly accurate when other methods fail to capture strong electron correlations. 

2.4. Configuration Interaction 

The CI method is a method by the quantum chemistry. It improves upon Hartree-Fock by including 

electron correlation explicitly to solve the Schrödinger equation also for many-electron systems. This 
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method achieves this by expanding the wavefunction as a linear combination of multiple Slater 

determinants, representing different electronic configurations.  

The exact wavefunction Ψ of a many-electron system is expressed as a linear combination of 

determinants  Ψ = ∑ 𝑐𝐼Φ𝐼𝐼 , where Φ𝐼  are Slater determinants formed by distributing electrons 

among molecular orbitals, 𝑐𝐼 are coefficients to be determined by solving the Schrödinger equation 

[8]. 

2.5. Parametric Perturbation Method 

This method involves treating the electron-electron interaction as a small perturbation to the 

unperturbed Hamiltonian. The Hamiltonian for the helium atom includes H = 𝐻0 + 𝐻𝑖𝑛𝑡 where the 

unperturbed Hamiltonian 𝐻0 =
ℏ

2𝑚
− (∇1

2 + ∇2
2) −

𝑍𝑒2

4πϵ0𝑟1
−

𝑍𝑒2

4πϵ0𝑟2
 and describes two electrons 

independently moving in the Coulomb field of the nucleus (ignoring electron-electron interaction). 

The perturbation Hamiltonian 𝐻int =
𝑒2

4πε0

1

|𝑟1−𝑟2|
 and represents the Coulomb repulsion between the 

two electrons [9]. 

3. Computation and Comparison 

3.1. Result of Parametric Perturbation Method 

Lu presented a method of calculating the ground state energy of helium atom and considers the 

radial repulsion of two electrons in a helium atom is considered [1]. Here, the wave functions of two 

hydrogen-like atoms with an effective nuclear charge 𝑍∗ = 2-σ are chosen as zeroth and first to 

fourth order approximations of the ground state wave functions of helium atoms. By applying the 

parametric perturbation method, they calculated the fourth approximation of the ground state energy 

of helium atoms and found that the error between the calculated and experimental values is ΔE = 

0.004922028
𝑒2

𝑎0
.  

The total Hamiltonian is expressed as 𝐻̂ = 𝐻̂̂(0)(𝑟1, 𝑟2, σ) + 𝐻̂′(𝑟1, 𝑟2, 𝜎), where 𝐻̂̂(0) represents 

the unperturbed Hamiltonian of two hydrogen-like atoms with effective nuclear charge 𝑍∗, and 𝐻̂′ 

includes the Coulomb repulsion and corrections due to electron interactions. The unperturbed 

Hamiltonian is given by  

𝐻̂̂(0)(𝑟1, 𝑟2, σ) = −
ℏ2

2𝑚
∇1

2 −
ℏ2

2𝑚
∇2

2 −
(2 − σ)𝑒2

𝑟1
−

(2 − σ)𝑒2

𝑟2

(2) 

The perturbation term 𝐻̂′(𝑟1, 𝑟2, 𝜎)   accounts for the Coulomb repulsion between the two 

electrons and the corrections to their potential energy due to the screening effect. Using the effective 

nuclear charge 𝑍∗ = 2-σ, the wave function approximations for the helium atom’s ground state were 

constructed. The zeroth-order approximation  ψ(0)(𝑟1, 𝑟2, σ)  represents both electrons in the 1s 

state of a hydrogen-like atom, while higher-order approximations incorporate excited states (e.g., 2s, 

3s). 

The ground-state energy is calculated iteratively as the sum of the zeroth-order energy  𝐸(0)  and 

corrections from higher-order terms (𝐸(1),𝐸(2), etc.). The total energy expression is optimized with 

respect to the screening parameterσ, resulting in the value σ=0.618422517, corresponding to an 

effective nuclear charge of  𝑍∗  = 1.381577483. The calculated ground-state energy using this 

method is 

𝐸 = −2.89846445 
𝑒2

𝑎0

(3) 

This method demonstrates the effectiveness of introducing a physically meaningful screening 

parameter, achieving high accuracy without requiring extensive computational resources. As the 
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approximation order increases, the results approach the experimental value more closely, validating 

the parameter perturbation approach for multi-electron systems. 

3.2. Use of Approximate Method 

It is reported in Ref. [2] that the author discusses the helium atom and the challenge of solving its 

Schrodinger equation due to the 3-body problem. It outlines the independent electron approximation, 

where the electron-electron repulsion force is ignored, and compares the predicted ionization potential 

and ground state energy with the experimental values, showing significant errors. The paper then 

introduces perturbation theory to go beyond the independent electron model and consider electron-

electron repulsion. It provides details to the first-order perturbation theory and with how it can be 

used to obtain improved energy levels and wave functions for helium atoms. 

Firstly, the independent electron approximation is adopted, ignoring the electron-electron 

interaction, and the helium atom is reduced to two independent hydrogen atoms. In this approximation 

method, the total wavefunction of a helium atom can be written as the product of the wave functions 

of two single electrons, and the total energy can also be expressed as the sum of the energies of two 

single electrons. However, the independent electron approximation cannot accurately describe the 

ionization potential and ground state energy of helium atoms, and there are large deviations from the 

experimental values. This is because the effects of electron-electron interactions are ignored.  

To improve the independent electron model, the method of perturbation theory can be used to treat 

the electron-electron interaction be the perturbation term of the one-electron Hamiltonian. First-order 

perturbation theory can be used to calculate improved energy levels and wave functions of helium 

atoms to better describe the effects of electron-electron interactions. For more general multi-electron 

atoms, orbital approximation can be used to express the total wavefunction to be product of the single-

electron orbital wavefunction. In this way, the n-body problem will be simplified into N numbers of 

one-body problems and solved by self-consistent computation. In this method, it is still necessary to 

ignore the electron correlation effect, which is an approximation. More accurate electronic correlation 

methods have also been widely developed and applied. 

3.3. Result in Hatree-Fock Method 

The main challenge in the helium atom lies in the electron-electron interaction term, which 

complicates the exact result of the Schrödinger equation. The HF method addresses this by treating 

each electron in the system as moving independently in an effective potential created by the nucleus 

and the averaged influence of the other electrons. 

The Hamiltonian for the helium atom in atomic units is given by 

𝐻̂ = −
1

2
∇1

2 −
1

2
∇2

2 −
2

𝑟1
−

2

𝑟2
+

1

|𝑟1 − 𝑟2|
(4) 

The terms correspond to the kinetic energy of the two electrons, the potential energy from the 

Coulomb attraction between the electrons and the nucleus, and the repulsion between the two 

electrons. The last term
1

 |𝑟1−𝑟2|
, which accounts for the interaction between the two electrons, makes 

the Schrödinger equation unsolvable analytically. 

To simplify the problem, the HF method approximates the total wavefunction of the helium atom 

as a product of two single-electron wave functions  Ψ(𝑟1, 𝑟2) = ϕ𝐻𝐹(𝑟1)ϕ𝐻𝐹(𝑟2) . Each single-

electron wavefunction, 𝜙𝐻𝐹(𝑟), satisfies a single-electron Schrödinger equation with an effective 

Hamiltonian. The effective Hamiltonian for one electron, say electron 1, is given by 

𝐻̂eff, 1 = −
1

2
∇1

2 −
2

𝑟1
+ 𝑈eff(𝑟1) (5) 

Where 𝑈eff(𝑟1) is the effective potential that represents the averaged interaction of electron 1 

with electron 2. This effective potential is calculated as 

Ueff(r1) = ∫ |ϕHF(r2)|2 
1

|r1  −  r2|
   d3r2 (6) 
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The HF method proceeds iteratively. An initial guess for the wavefunction 𝜙𝐻F(𝑟2) is used to 

calculate 𝑈eff(r1) , which is then substituted into the Schrödinger equation to solve for an 

updated𝜙𝐻𝐹(𝑟1) . This updated wavefunction is used to recompute 𝑈eff(r1) , and the process is 

repeated until convergence is achieved, meaning the wavefunctions no longer change significantly 

between iterations. 

Once the self-consistent wavefunctions are obtained, the total energy of the system in the HF 

approximation is computed as 

𝐸HF = ∫ 𝜙𝐻F(𝑟2) 𝜙𝐻F(𝑟1) (−
1

2
(∇1

2 + ∇2
2) −

2

𝑟1
−

2

𝑟2
+

1

|𝑟1 − 𝑟2|
) ϕHF(𝑟1)ϕHF(𝑟2) 𝑑3𝑟1𝑑3𝑟2 (7) 

This can be expressed in terms of individual contributions 𝐸HF = 𝐼1 + 𝐼2 + 𝐽12, where𝐼1 and 𝐼2 

are the one-electron integrals accounting for the kinetic energy and the electron-nucleus attraction, 

while 𝐽12 is the Coulomb integral representing the averaged electron-electron repulsion. These terms 

are defined as 

𝐼1 = ∫ ϕHF
∗ (𝑟1) (−

1

2
∇1

2 −
2

𝑟1
) ϕHF(𝑟1) 𝑑3𝑟1 (8) 

And 

𝐽12 = ∫|𝜙𝐻F(𝑟1)|2|𝜙𝐻F(𝑟2)|2
1

|𝑟1 − 𝑟2|
 𝑑3𝑟1𝑑3𝑟2 (9) 

For the helium atom, the HF ground-state energy is calculated as approximately −77.87 eV, which 

is very close to the experimental value of −79.0 𝑒𝑉. This demonstrates that the HF method effectively 

captures the essential physics of the system, even though it neglects electron correlation. 

Despite its accuracy, the HF method has limitations. It does not account for the instantaneous 

correlation between the motions of electrons, which can further lower the total energy. This 

correlation can be addressed by more advanced methods, such as Configuration Interaction or 

Coupled-Cluster Theory, which build on the HF wavefunctions as a starting point. Nevertheless, the 

HF method remains a cornerstone of quantum chemistry and is foundational for understanding the 

electronic structure of multi-electron atoms. 

3.4. Comprehensive Optimization Process 

Based on the results of each references summarized above, by constructing a trial wavefunction, 

one can more intuitively and easily understand the solution of the internal ground state energy of 

helium atom from the methods that the author has mentioned in section 2. 

When applying the variational method to calculate the ground state energy of helium, the critical 

step is selecting an appropriate trial wavefunction. This function should closely approximate the true 

ground-state wavefunction, incorporating electron correlation effects and respecting physical 

symmetry. Electron correlation describes how interactions between electrons influence their motion 

and distribution in multi-electron systems. By carefully designing trial wavefunctions, more detailed 

electron correlation information can be captured in the ground state solution for helium. 

In the helium atom, two electrons have inseparable relations to each other, which means there are 

correlations cause the motion such as radial correlation, angular correlation, electron shielding effect, 

higher order association, exchange correlation etc. At this optimization process, this paper will choose 

the radial correlation, angular correlation and the electron shielding effect as the elementaries.  

Without considering the electron interaction, the wavefunction can be expressed in terms of two 

independent 1𝑠 wavefunctions  

ϕ1𝑠(𝑟) =
𝑍3

π𝑎0
3 𝑒−𝑍𝑟/𝑎0 (10) 

Where 𝑍the number of the charges in the nucleus is, 𝑟 is the distance from the electron to nucleus, 

and 𝑎0 is the Bohr radius. The initial wavefunction is  

ψ0(𝑟1, 𝑟2) = ϕ1𝑠(𝑟1)ϕ1𝑠(𝑟2) (11) 
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When two electrons are too close together, the coulomb repulsion makes them tend to move apart, 

the radial correlation describes the effect of the distance distribution between electrons on each other's 

motion. This effect is captured by introducing an explicit 𝑟12 = |𝑟1 − 𝑟2| dependency, so the trial 

wavefunction with this correlation is  

ψ(𝑟1, 𝑟2) = ϕ1𝑠(𝑟1)ϕ1𝑠(𝑟2)𝑓(𝑟12) (12) 
Where the form of 𝑓(𝑟12) is equal to 𝑒−λ 𝑟12 , and λ >  0 is a variational parameter used to 

optimize the effect of electron spacing on the wavefunction. Then one can get the wavefunction of 

including the radial correlation 

ψ1(𝑟1, 𝑟2) = ϕ1𝑠(𝑟1)ϕ1𝑠(𝑟2)𝑒−λ|𝑟1−𝑟2| (13) 
In order to reduce the repulsion between the electrons, the two electrons tend to be distributed in 

symmetrical positions in the nucleus. This effect can be captured by the distribution of relative angles 

θ12 which is cos θ12 =
𝑟1⋅𝑟2

𝑟1𝑟2
. When adding an Angle association, this paper selects an item of the 

following form  

𝑔(cos θ12) = 1 + γ cos θ12 (14) 
Where γ  is a variational parameter that controls the degree to which electrons tend to be 

distributed in the opposite direction (when γ <  0, electrons tend to be distributed in the opposite 

position). Combining the radial and angular correlation, so the wavefunction is going to be  

ψ2(𝑟1, 𝑟2) = ϕ1𝑠(𝑟1)ϕ1𝑠(𝑟2)𝑒−λ𝑟12(1 + γ cos θ12) (15) 
In the helium atom, there is also an interaction between electron-electron, due to the interaction 

between electrons, one electron partially blocks the nucleus's attraction to the other electron. This 

makes the perceived effective nuclear charge of the electron smaller than the true nuclear charge. 

Modify the radial distribution of the wave function by adjusting the nuclear charge 𝑍 to the effective 

nuclear charge 𝑍eff will get  

ϕ1𝑠
′ (𝒓) =

𝑍eff
3

π𝑎0
3 𝑒−𝑍eff𝑟/𝑎0 (16) 

Effective nuclear charge 𝑍eff as a variational parameter which can be obtained by optimization. 

Make ϕ1𝑠(𝑟) replaced byϕ1𝑠
′ (𝑟), then the wavefunction after adding the shielding effect is 

ψ3(𝑟1, 𝑟2) = ϕ1𝑠
′ (𝑟1)ϕ1𝑠

′ (𝑟2)𝑒−λ𝑟12(1+γ cos θ12) (17) 
Combining the above three correlations, the final trial wave function is  

ψ(𝑟1, 𝑟2) =
𝑍eff 3

π𝑎0
3 𝑒−𝑍eff𝑟1/𝑎0 ⋅

𝑍eff
3

π𝑎0
3 𝑒−𝑍eff𝑟2/𝑎0 ⋅ 𝑒−λ𝑟12(1 + γ cos θ12) (18) 

𝑍eff Captures the masking effect; 𝜆 captures radial correlation; 𝛾 captures angular correlations. 

Optimizing the process by define a Hamiltonian of 

𝐻 = −
ℏ2

2𝑚
(∇1

2 + ∇2
2) −

𝑍𝑒2

4πϵ0𝑟1
−

𝑍𝑒2

4πϵ0𝑟2
+

𝑒2

4πϵ0𝑟12
, (19) 

And the expectation value 𝐸 =
⟨𝜓|𝐻|𝜓⟩

⟨ψ|ψ⟩
. In the end, this paper optimizes 𝑍eff, 𝜆 𝛾 to minimize 

the total energy E to get the ground state energy of helium atom. 

4. Conclusion 

The ground state of the helium atom poses a significant challenge in quantum mechanics due to 

the complexities of the three-body problem involving two electrons and a nucleus. Unlike the 

hydrogen atom, where a single electron interacts with the nucleus, the helium atom requires a detailed 

account of electron-electron interactions, making its Schrödinger equation unsolvable exactly. To 

address this, approximation methods such as the variational principle, Hartree-Fock, quantum Monte 

Carlo, configuration interaction, and parametric perturbation methods have been developed. Each 

method has its unique strengths and limitations. The variational principle uses trial wavefunctions to 

provide the upper bounds for ground state energy, incorporating electron correlation to improve 
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accuracy. The Hartree-Fock method simplifies the problem by averaging electron interactions but 

neglects instantaneous correlations. Quantum Monte Carlo methods rely on stochastic sampling for 

high accuracy, particularly where other approaches fail. The configuration interaction explicitly 

includes electron correlations by combining multiple electronic configurations, refining results 

beyond Hartree-Fock approximation. Lastly, parametric perturbation methods treat electron-electron 

interactions as perturbations, achieving high accuracy through iterative approximations. These 

methods collectively enhance people’s understanding of helium’s energy levels and wavefunctions, 

with approaches like the variational principle and parametric perturbation standing out for their ability 

to describe electron correlations more precisely. Their applications advance not only quantum 

mechanics but also material science and technological innovation. 

References 

[1] Lu Ji, LI Tianle, Xi Wei, et al. Calculation of ground state energy of helium atom by parametric 

perturbation method. College of Physics, 2016, 35(08):36-38+47. 

[2] Bai Zhanwu, Yan Zhanyuan. Helium atomic energy level of the variational perturbation calculation. 

College of Physics, 2021, 40 (01): 21-23. 

[3] Sakurai J. J., Napolitano J. Modern Quantum Mechanics Second Edition. Pearson Education, Inc., 89-92, 

2011. 

[4] Chen Guanjun, Huang Shizhong. Helium atoms in the ground state wave function and the coulomb 

correlation effect. College of Physics, 2013, 32 (01): 5-8. 

[5] Li Qing-ren. Using the variational method to solve the ground-state energy of helium atom. Journal of 

songliao (Natural Science Edition), 1998, (4): 37-40. 

[6] Li Jiping, Li Qing-Ren, Gao Yan-Ling, et al. Calculating the ground state energy of helium atom by 

perturbation method. Journal of Liaoning Normal University (Natural Science Edition), 1991, (04):335-

338. 

[7] Yin Lin, Hu Xianquan. Variational calculation of ground state Energy of Helium atom. Journal of Jiaying 

University, 2005, (06):18-20.  

[8] Zhang C., Ning S., Lu Q. Research on the Ground State Energy of Helium-like Atom by Parameter 

Perturbation Method. College of Physics, 2015, 34(2): 32-32. 

[9] Wu F., Meng L. Ground State Energy of Beryllium Atom with Parameter Perturbation Method. Chin. 

Phys. B, 2018, 27: 093101. 


