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Abstract. Existing prediction algorithms face challenges in terms of accuracy and training speed, 
which hinders high-efficiency, high-accuracy power load forecasting. This paper proposes a 
combined prediction model to address these issues. To overcome the Bidirectional Gated Recurrent 
Unit (BiGRU)'s limitations in capturing long-term dependencies and handling complex time-series 
data, a Convolutional Neural Network (CNN) module is introduced to extract local features and 
enhance the model's feature representation. Additionally, a Multi-Head Attention (MH-Attention) 
module is incorporated to dynamically assign weights to different time steps, improving adaptivity 
and focus on key features. For hyperparameter optimization, an Improved Sparrow Search Algorithm 
(ISSA) is proposed, which addresses traditional SSA’s tendency to fall into local optima and slow 
convergence by incorporating an adaptive update mechanism and hybrid heuristic strategy. The 
model is validated using a power plant dataset from Quanzhou, with results showing excellent 
forecasting ability: R2=0.9955, RMSE=56.9596, and MAE=34.6080. Comparison with other models 
demonstrates improved performance, with R2 increasing by 0.3%-0.65%, RMSE decreasing by 
6.38%-35.96%, and MAE reducing by 26.54%-49.52%. These results confirm the model’s 
effectiveness and superiority. 

Keywords: Electricity Load Short-term Forecasting, BiGRU, MH-Attention, Sparrow Search 
Algorithm. 

1. Introduction 

Accurate load forecasting is crucial for power system stability and security [1]. As demand grows, 

advanced forecasting algorithms are needed to optimize generation, dispatch, and resource use [2]. 

However, existing algorithms often face challenges in balancing prediction accuracy and 

computational efficiency, especially in short-term load forecasting scenarios.  

Current power load forecasting algorithms primarily encompass statistical methods [3], machine 

learning methods [4] and deep learning methods [5]. In the realm of traditional statistics, Mohammad 

et al. [3] employed regression analysis for short-term load forecasting, a method that yielded superior 

forecasting outcomes. However, this approach is hindered by its inability to effectively handle 

nonlinear relationships and intricate patterns. In contrast, Sanjeev et al. [4] utilised an AutoRegressive 

Integrated Moving Average (ARIMA) model to forecast power loads, a model that could capture 

certain trends. Nevertheless, its capacity to handle sudden changes is deemed inadequate. Machine 

learning methods have been shown to have significant advantages over traditional statistical methods 

in terms of improving forecasting accuracy and handling more complex nonlinear data. Siti et al. [4] 

employed a support vector machine (SVM) for load forecasting, achieving more accurate results. 

However, the model's robustness is compromised in noisy data. Shi et al. [6] utilised random forest 

(RF) for short-term load forecasting, though the forecasting accuracy was not as good as that of the 

forecasting itself. The accuracy of load forecasting was enhanced, but the training time was lengthier, 

which impacted the practical application. Deep learning methods have been shown to be capable of 

handling complex high-dimensional data with strong expressive ability and self-learning ability in 

power load forecasting. Hua et al. [7] achieved high prediction accuracy by feature extraction of load 

data through a Convolutional Neural Network (CNN) model, but the method has difficulty in 

modelling long time dependencies. Hardanee et al. [8] used an Recurrent Neural Network (RNN) for 

load forecasting, achieving some results, but in the long time series, it is difficult to predict loads. 



Highlights in Science, Engineering and Technology ESAC 2025 

Volume 134 (2025)  

 

241 

While certain effects were observed, the challenge of gradient disappearance in long-time series 

prediction was identified. Yang et al. [9] employed an Long Short-Term Memory (LSTM) model for 

load prediction, achieving enhanced prediction accuracy. However, the adaptability to diverse load 

types was found to be inadequate. Hua et al. [7] implemented a Gated Recurrent Unit (GRU) model 

for short-term load prediction, yielding superior results. Nevertheless, the method remains 

challenging when it comes to handling the training demands of large-scale data. Lai et al. [10] 

employed Bidirectional Gated Recurrent Unit (BiGRU) for load forecasting, yielding substantial 

results, however, the training process remains time-consuming. Consequently, there is an urgent need 

to develop more efficient prediction models to meet the demand for high accuracy, real-time, and 

large-scale data processing in modern power systems. 

The prevailing power load forecasting model is a combination model, which enhances the 

forecasting accuracy by integrating sub-modules with different functions. However, the integrated 

model generally has a greater number of parameters, which results in a reduction in the efficiency of 

hyper-parameter training. In addressing this challenge, Konyrbaev et al. [11] employed Bayesian 

optimization to optimize the hyperparameters of the combined model, thereby enhancing the training 

efficiency. However, this method is constrained by its limited adaptability to high-dimensional spaces 

and its substantial computational demands. Aqueel et al. [12] used genetic algorithm (GA) to optimize 

the hyperparameters of the combined model, which improves the training speed, but the method is 

prone to falling into local optimal solutions, which limits the potential for further performance 

enhancement. In contrast, many researchers have attempted to optimize the hyperparameters using 

heuristic methods. Jiang et al. [13] utilised the particle swarm optimization (PSO) algorithm to 

enhance the hyperparameters of combinatorial models, thereby improving the training efficiency. 

However, the method was slow to converge and exhibited limited accuracy when confronted with 

complex objective functions. In contrast, Phanden et al. [14] employed the simulated annealing (SA) 

algorithm for hyperparameter optimization, circumventing the predicament of local optimal solutions, 

which curtails performance. This approach, however, is sluggish to converge and inefficient in large-

scale problems, despite its capacity to evade local optima. Recent advancements in the utilisation of 

optimization algorithms for hyperparameter optimization have yielded encouraging outcomes. Li et 

al. [15] proposed an innovative approach by employing the whale optimization algorithm (WOA) to 

enhance the training efficiency of a combined model. However, the method encounters certain 

limitations when confronted with intricate constraints. Similarly, Tang et al. [16] utilised the Sparrow 

Search Algorithm (SSA) to optimize the hyperparameters of the combined model, thereby markedly 

enhancing the training efficiency. Nevertheless, the method lacks stability and is overly simplistic. 

However, the stability and global search capability of this method still need to be further improved. 

Although intelligent optimization algorithms improve the training efficiency to a certain extent, they 

generally suffer from slow convergence speed and the tendency to fall into local optimal solutions. 

Therefore, there is an urgent need to develop more efficient optimization algorithms for the hyper-

parameter training process of combinatorial models to meet the demand for high accuracy and fast 

training for power load forecasting. 

This paper proposes a combined model using an Improved Sparrow Search Algorithm (ISSA)-

CNN-BiGRU-MH-Attention to address accuracy and timeliness challenges [16]. The model 

integrates CNN for local feature extraction, BiGRU for long-term dependencies, and MH-Attention 

for key feature focus. An enhanced SSA optimizes the hyperparameter process with an adaptive 

update mechanism and hybrid heuristic strategy. The model offers high-precision predictions, better 

training efficiency, and flexibility for large-scale real-time forecasting in power systems. 

2. Combined prediction model 

This paper proposes a combined forecasting model based on CNN-BiGRU-MH-Attention to meet 

the demands for high accuracy and timeliness in power load forecasting. First, to address the 

limitations of the BiGRU algorithm in capturing long-term dependencies and handling complex time-
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series data, a CNN module is introduced to enhance the model's ability to handle short-term 

dependencies. The next challenge is the inability of the CNN-BiGRU module to effectively focus on 

the most important features in the input data. To overcome this, the MH-Attention module is added 

to dynamically assign varying weights to input data at different time steps, thereby improving the 

model's adaptability and ability to focus on key features. The proposed combined model effectively 

captures the time-series characteristics and complex nonlinear relationships of power loads, 

improving the accuracy and stability of short-term load forecasting. It is well-suited for power system 

scheduling and load management applications, as demonstrated in Figure 1. 

 

Figure 1. Structure of CNN-BiGRU-MH-Attention combined prediction model 

2.1. CNN 

The CNN [7] module captures the temporal change pattern of the data by extracting local features 

in the input data. Through convolutional operations, it can automatically learn the local correlations 

between different time steps, enabling the model to better recognise short-term dependencies and 

improve the response to power load fluctuations. The features learned by each convolutional kernel 

are shared throughout the input data, thereby reducing the number of parameters and enhancing the 

training efficiency of the model. 

The input data is represented by a sequence X=[x1, x2,…, xt], where xi denotes the power load data 

at time step i. The fundamental formulation of the convolution operation is as follows: 


=

−+ +=
K

k

kiki bxwy
1

1                              (1) 

Where yi is the output feature after convolution, wk is the parameter of the convolution kernel, b 

is the bias term, K is the length of the convolution kernel, and xi+k-1 is the local window data in the 

input sequence. The 1D convolution operation involves the gradual movement of the convolution 

kernel, wk, over the input data, thereby extracting local features in a stepwise manner. The reiteration 

of this process, through multiple convolution operations, leads to the generation of varying levels of 

feature representations. Consequently, these higher levels of feature representation serve to enhance 

the feature representation of the model. 

2.2. BiGRU 

BiGRU [10] enhances RNN technology by effectively addressing long-term dependency 

challenges in time-series data. It processes input data through both forward and reverse GRU 

networks. The outputs from both directions are then merged to form a comprehensive representation 

of timing features. The BiGRU model consists of two GRU units: one for forward sequences and the 

other for reverse sequences, each with update and reset gates to regulate the flow of information 

directionally. The reset gate rt for the forward GRU is calculated as follows: 

)( 1−+= trtrt hUxWr                                (2) 
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Where σ is the sigmoid activation function, Wr and Ur are the weight matrices, xt is the input of 

the current moment, and ht-1 is the output of the previous moment. The update gate Zt controls how 

much information is retained at the current moment, its formula is: 

）（ 1tztzt hUxWZ −+=                              (3) 

Candidate Hidden State tĥ  Calculation formula: 

))(tanh(ĥ 1t −+= tthth hrUxW                            (4) 

Where tanh is the hyperbolic tangent function, Wh and Uh are the weight matrices, and rt  ht-1 

denotes the gating value of the hidden state at the previous moment. The final hidden state ht is 

calculated by the formula: 

ttttt hzhzh ˆ)1( 1 +−= −                              (5) 

The computation of the reverse GRU is similar to the forward GRU, except that the time order is 

reversed and the processing is completely symmetric with the forward GRU. BiGRU merges the 

forward and reverse hidden states to get the final bi-directional hidden state: 

];[ back

tt

bi

t hhh =                                 (6) 

Where [  ,  ] indicates that the forward and reverse hidden states are stitched together to form a 

richer representation. 

2.3. MH-Attention 

The Multi-Headed Attention mechanism [17] addresses computational inefficiency and inadequate 

long-term dependency capture in traditional sequence models. It allows the model to focus on 

important information at different locations, enhancing its ability to learn complex patterns. Multiple 

attention heads compute in parallel to capture different features. Each query vector calculates a dot 

product with all key vectors to obtain a correlation score, which is processed by Softmax to get 

attention weights. The value vectors are weighted and summed based on these weights. The results 

from multiple heads are concatenated to produce the final output. Assuming an input sequence X=[x1, 

x2,..., xn], compute the query, key and value vectors for each element, compute the attention weights, 

and perform data splicing to obtain the multi-head attention output. Specific steps include: input data 

is linearly transformed with the weight matrix with the formula: 

QQ XW=                                   (7) 

KK XW=                                   (8) 

VV XW=                                   (9) 

Where QW , KW  and VW  are the learned weight matrices. Calculating Attention Weights: for 

each query, the relevance is measured by calculating the dot product of the query and the keys, scaled, 

and then the normalized weights are obtained by Softmax. The formula for this is: 

( , , ) max( )
T

k

QK
Attention Q K V soft V

d
=                      (10) 

Where 
T

k

QK

d
 is the dot product of the query and key, kd  is the dimension of the key, and the 

Softmax operation ensures that all weights sum to 1. Multi-head Attention: enables the model to learn 

different subspace features by computing multiple attention heads in parallel. Each attention head has 

an independent query, key, and value, and computes the respective outputs using the above formulas. 
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These outputs are then stitched together and linearly transformed to obtain the final multi-head 

attention output. The formula for this is: 

1 2MultiHead( , , ) Con ( , ,..., )hQ K V cat head head head Wo=               (11) 

Where ( , , )i i ii Q K Vhead Attention QW KW VW= , Wo  are the output weight matrices obtained from 

learning and h is the number of attention heads. 

The CNN-BiGRU-MH-Attention model proposed in this paper is a combined model, which has 

more number of parameters compared to BiGRU to better capture complex temporal features and 

nonlinear relationships, but it also reduces the parameter training efficiency of the model. Currently, 

the mainstream hyperparameter optimization algorithms are dominated by heuristic algorithms, but 

these algorithms are slow to converge and inefficient when dealing with complex objective functions 

or dealing with large-scale problems. 

3. Improved SSA algorithm 

This paper introduces an enhanced SSA algorithm for optimizing the hyperparameter search 

process of the CNN-BiGRU-MH-Attention combined model. Traditional SSA algorithms often 

struggle with high-dimensional and complex problems, tending to converge to local optima. 

Additionally, the search process is rigid in terms of step size and direction, which slows down 

convergence. To address these issues, we propose an adaptive update mechanism and a hybrid 

heuristic strategy. The adaptive update mechanism dynamically adjusts step size and search direction 

based on the current fitness value of individual sparrows, preventing overly large or small step sizes. 

This improves the global search capability and accelerates convergence. The hybrid heuristic strategy 

combines the global search ability of PSO with the local search advantages of SSA, enhancing the 

algorithm's performance in high-dimensional spaces. The enhanced SSA algorithm significantly 

improves convergence speed, avoids local optima, and increases search accuracy.  

3.1. Traditional SSA algorithm 

The SSA [16] follows these steps: Initialization: A population of sparrows is randomly generated, 

with each individual representing a potential solution. Adaptation Evaluation: Each sparrow’s 

adaptability is evaluated, reflecting the quality of the solution, with better-adapted sparrows 

considered better solutions. Behavioral Update: Sparrows decide between global exploration or local 

exploitation based on their fitness. Better-adapted individuals choose local exploitation, adjusting the 

search direction, while less adapted ones perform global exploration. 

Observer Update: Observers search for potential high-quality solutions around sparrows and 

follow promising individuals, mainly identifying local optima. In the traditional SSA algorithm, the 

position and velocity are updated by the following equations: position update: the current position xi 

of each sparrow is updated by the formula: 

11 ++ += t

i

t

i

t

i vxx                                 (12) 

Where 
t

ix  denotes the current position of the i-th sparrow in generation t. 
1+t

iv  denotes the speed 

of the i-th sparrow in generation t+1. Speed Update: Sparrow's speed update formula is adjusted 

according to its exploratory and exploitative behaviors, and the common update strategies are as 

follows: 
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Where w  is the inertia weight, 1c  and 2c  are the acceleration constants, 1r  and 2r  are the 

random numbers, 
t

bestx  is the individual optimal solution, 
t

globalx  is the global optimal solution. 

Behavioral switching: Individual sparrows decide whether to explore (global search) or exploit (local 

search) based on their fitness values. If the individual's current fitness is poor, it will perform more 
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extensive exploration behavior, if it is better fit, the individual will perform local exploitation to fine-

tune the search of the nearby solution space. 

SSA has some limitations: it often lacks flexibility, leading to confinement in specific search 

regions, particularly with fixed step sizes and directions, resulting in inefficiency and lower solution 

quality. Additionally, SSA relies on a single local search strategy, limiting its global search ability. 

This inefficiency causes slow convergence or local optima in high-dimensional problems, 

highlighting the need for improvements in the algorithm. 

3.2. Improvement strategies 

(1) Adaptive updating mechanism 

The adaptive update mechanism [18] adjusts the step length and search direction based on each 

sparrow's fitness value, improving search flexibility and efficiency. In this mechanism, step size and 

direction are dynamically adjusted. Sparrows with higher fitness may expand the search space, while 

those with lower fitness focus on more promising areas by reducing step size. Fitness Calculation: 

Fitness is evaluated using the objective function, indicating the sparrow’s position in the solution 

space. Dynamic Step Size Adjustment: Step size is increased for higher fitness sparrows and 

decreased for lower fitness ones, ensuring efficiency. Search Direction Adjustment: The search 

direction is modified based on fitness, optimizing the search strategy and improving overall search 

efficiency and accuracy. 

Let the position of the individual sparrow be tx , its fitness value be )( txf , and the step size be

x , then the update formula for the step size under the adaptive update mechanism is: 

)(

)()(

best

tbest
t

xf

xfxf
x

−
=                             (14) 

Where tx  is the adjusted step length of the current sparrow individual,   is the constant 

controlling the change of step length, )( bestxf  is the fitness value of the global optimal solution, 

)( txf  is the fitness value of the current sparrow individual. The step size tx  is determined by the 

fitness difference between the current sparrow individual and the global optimal individual, and the 

individual with larger fitness difference will get a larger step size in order to expand the search space. 

The search direction update formula is: 

))()(( bestttt

new

t xfxfsignxxx −+=                       (15) 

Where 
new

tx  is the updated sparrow position, ))()(( bestt xfxfsign −  denotes the search direction.  

With these two formulas, the sparrow's step size and direction can be dynamically adjusted 

according to the current fitness value, which makes the search process more intelligent and avoids 

the fixed search strategy in traditional SSA, thus improving the search efficiency and the quality of 

the final solution. 

(2) Hybrid heuristics 

The hybrid heuristic strategy [19] integrates the SSA and PSO algorithms. The PSO algorithm 

explores the solution space broadly, leveraging the global search ability of the particles, while the 

SSA algorithm focuses on fine-tuning within the local region through local search. This combination 

enables the optimization process to search globally without losing accuracy and to refine solutions 

locally without easily getting stuck in local optima. The hybrid heuristic strategy operates as follows: 

Global search (PSO part): The PSO algorithm is used to explore the entire solution space, identifying 

potential superior solutions through its global search strategy. Local search (SSA part): The SSA 

algorithm then refines these solutions by conducting a more detailed search within the local region to 

improve their accuracy. 

An alternative mechanism proposes alternating between the two algorithms: the SSA refines the 

solutions after each PSO global search, and PSO performs another global search after each SSA 
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optimization. This alternating mechanism ensures that the global search avoids falling into local 

optima, while the local search continuously enhances the accuracy of the solutions, ultimately leading 

to a better global optimal solution. The particle swarm optimization algorithm searches for the optimal 

solution by the position and velocity of the particles. The formulas are as follows: velocity update 

formula:  

)()( 2211 iiii

new

i xgrcxprcvwv −+−+=                    (16) 

Where 
new

iv  is the update speed of the i-th particle, w is the inertia weight, c1 and c2 are the 

learning factors, r1 and r2 are the random numbers, pi is the individual best position of the i-th particle, 

g is the global best position, xi is the particle current position. The position update formula: 

new

ii

new

i vxx =                                (17) 

Where 
new

ix  is the position update of the particle. In the hybrid heuristic strategy, the sparrow 

performs local search tuning through its fitness value and position: 
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Where tx  is the step size adjustment of the current sparrow individual, )( bestxf  is the fitness 

value of the global optimal solution, )( txf  is the fitness value of the current sparrow individual. 

The position update formula is: 

))()(( bestttt

new

t xfxfsignxxx −+=                       (19) 

Where ))()(( bestt xfxfsign −  determines the direction of the update. The hybrid heuristic 

strategy enhances the optimization by alternating the update strategies of PSO and SSA. Suppose that 

at a certain stage, after the PSO algorithm performs a global search, the sparrow search algorithm 

makes local adjustments based on this formula: 

SSA

t

PSO

t

new

t xxx −+= )1(                           (20) 

Where 
PSO

tx  is the position obtained by particle swarm optimization. 
SSA

tx  is the position 

adjusted by sparrow search,   is the weight coefficient, which is used to balance the effects of PSO 

and SSA. 

3.3. Algorithm optimization process 

Figure 2 illustrates the flowchart for optimizing the CNN-BiGRU-MH-Attention model using the 

ISSA optimization algorithm. 

As shown in Figure 2, the model's basic parameters are first entered, influencing the optimization 

process. The data is divided into training, validation, and test sets for model training, hyperparameter 

tuning, and performance evaluation, respectively. In the ISSA optimization, the sparrow positions 

represent model parameters and are randomly initialized to start the search. The adaptation value, 

based on model performance, is calculated, with lower values indicating better models. The adaptive 

update mechanism adjusts step size based on fitness: it increases step size for higher fitness and 

decreases it for lower fitness to focus on promising regions. The position of sparrows is updated using 

the formula. In the hybrid heuristic strategy (PSO+SSA), a mutation operation generates new 

solutions, followed by a crossover to merge mutated vectors with the target solution, and a selection 

operation to choose the optimal solution as the new sparrow position. After each iteration, the 

parameters are updated and passed to the CNN-BiGRU-MH-Attention model for training. The 

process terminates when the maximum iterations are reached or adaptation no longer improves, with 

the optimal parameters output for the final prediction task. 
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Figure 2. Flowchart of optimization algorithm 

4. Experimentation and Analysis 

4.1. Simulation environment 

(1) Data set 

In this paper, the power load dataset of a power plant in Quanzhou, a southern region, from 2016-

1-1 0:00:00 to 2016-1-31 23:45:00 is selected as a sample, with a total of 2976 data samples and a 

sampling frequency of 15 minutes. The training set, test set as well as validation set's are 70%, 20% 

and 10% of the total sample size respectively. The input variables are data related to electricity 

consumption of power load. 

(2) Simulation environment 

The computer environment used in this paper is shown in Table 1. 

Table 1. Experimental environment 

Parameter Name Parameter 

CPU Intel(R) Core(TM) i9-14900HX 2.20 GHz 

Video card NVIDIA GeForce RTX 4070 Laptop GPU 8GB 

Random access memory (RAM) 32GB 

Code language Python 3.8 

Hardware Pycharm 2024.2.1 

(3) Parameterization 

The model parameters used in this paper are shown in Tables 2 and 3. 

Table 2. Parameters related to the combined model 

Model Parameter Name Parameter value 

Time_step 12 

Filters 128 

Kernel_size 3 

Batch_size 16 

Epochs 100 

Learning_rate 0.001 
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Table 3. ISSA related parameters 

Model Parameter Name Parameter value 

Population_size 50 

Max_iterations 100 

Alpha 0.5 

Beta 0.7 

Inertia_weight 0.9 

Cognitive_weight 2.0 

Social_weight 2.0 

(4) Assessment indicators 

In order to assess the accuracy of the model, Root Mean Square Error (RMSE), Mean Absolute 

Error (MAE) and coefficient of determination: R2 (R-Square) are chosen as the assessment indexes 

of the model in short-term power load forecasting, RMSE and MAE are the core indexes for assessing 

the model forecasting accuracy, the closer its value is to 0, the higher the forecasting accuracy of the 

surface model and the smaller the error. R2 reflects the goodness of the model's fitting, the closer its 

value is to 1, the better the model's fitting effect is, and the specific calculation formula is as follows: 
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Where n is the total number of test samples, iy  denotes the true value of the i-th sample point, 

and 
iy



 denotes the predicted value of the i-th sample point. iy  denotes the mean of the i-th sample 

point. 

4.2. Model validation 

In order to verify the validity and applicability of the proposed model, we have compiled the trend 

of the Loss function during the training of the model and recorded it in Figure 3. 

 

Figure 3. Algorithm Loss Diagram 



Highlights in Science, Engineering and Technology ESAC 2025 

Volume 134 (2025)  

 

249 

As shown in Figure 3, the Loss curve shows a decreasing trend with the continuous increase of 

epoch. The curve shows a large decline in the early stage, when the epoch reaches about 50 the curve 

decline slows down, when the epoch reaches about 100 the curve tends to stabilize, the value tends 

to be close to 0, indicating that the model convergence is good, there is no obvious overfitting or 

underfitting phenomenon, the training process is effective, the model finds the optimal parameter 

selection, the model in the training process can effectively reduce the error and achieve a better 

performance. In addition, in order to represent the deviation of the model's predicted and true values, 

we organized the trends of the predicted and true values and recorded them in Figure 4. 

 

Figure 4. Comparison of real values and predicted values 

As shown in Figure 4, the red curve represents the true value, and the blue curve represents the 

predicted value of the ISSA-CNN-BiGRU-MH-Attention combination model, and the predicted 

value of the combination model is very close to the true value, which indicates that the model has a 

high degree of fitting, and that the model is able to accurately capture the features of the data with 

strong accuracy and generalization performance, and it has a good load prediction capability. 

Table 4. Indicators for model evaluation 

Model RMSE MAE R2 

Training 56.9596 34.6080 0.9955 

Test 56.9584 34.6072 0.9934 

The combined model evaluation metrics are shown in Table 4. The RMSE metric of the model 

reaches 0.9950 on the training set and 0.9934 on the test set, the MAE metric reaches 56.9596 on the 

training set and 56.9584 on the test set, and the R2 metric reaches 34.60780 on the training set and 

34.6072 on the test set, which can be reflected that the model has a good metrics evaluation result, 

and the model performance is good. The performance of the model is good. In summary, the Loss 

curve of the model converges and tends to 0, and the true value and the predicted value are very close 

to each other, and at the same time, the model has good evaluation indexes on both the training set 

and the test set, thus verifying the validity and applicability of the model. 

4.3. Ablation experiments  

To evaluate the contribution effect of individual modules in the proposed model, this paper will 

compare the performance of different combination modules (BiGRU, CNN-BiGRU, CNN-BiGRU-

MH-Attention) on the same dataset with RMSE, MAE and R2 as the evaluation metrics. The 

experimental results are shown in Table 5. 

Table 5. Comparison of Indicators across Models 

Model RMSE MAE R2 

BiGRU 117.9121 82.7217 0.9807 

CNN-BiGRU 99.0951 70.6370 0.9864 

CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904 
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As shown in Table 5, the BiGRU model's test set results have an R² of 0.9807, RMSE of 117.91, 

and MAE of 82.72, indicating high fit but relatively large error. The combined CNN-BiGRU model 

improves response to power load fluctuations, reducing RMSE by 15.96%, MAE by 14.61%, and 

increasing R² by 0.58%. Introducing the multi-attention mechanism, the CNN-BiGRU-MH-Attention 

model further improves performance: RMSE decreases by 16.05% to 83.19, MAE drops by 24.34% 

to 53.44, and R² increases by 0.41% to 0.9904. These results show that optimizing the model structure 

reduces prediction error and improves fit. The inclusion of CNN and MH-Attention effectively 

enhances model performance. Deviations between predicted and true values for different models are 

shown in Figure 5. 

 

Figure 5. Comparison of different combination models 

As shown in Figure 5, as the strategies are continuously introduced, the prediction curves fit more 

and more with the curves of the true values, and the final prediction trend fits almost perfectly with 

the true value trend, thus proving the effectiveness of each introduced strategy. 

4.4. Comparative experiments 

In order to verify the superiority of the combined CNN-BiGRU-MH-Attention model for short-

term electricity load forecasting, this paper will compare the performance of differentforecasting 

models on the same dataset, and the comparison models include: the CNN-BiLSTM-SH-Attention, 

the CNN-LSTM-MH-Attention, the TCN-GRU-SENET, TCN-BiGRU-SH-Attention, and CNN-

BiGRU-MH-Attention. and RMSE, MAE, and R2 are used as evaluation metrics. The experimental 

results are shown in Table 6. 

Table 6. Comparison of evaluation metrics of different strategies on the model 

Model RMSE MAE R2 

CNN-BiLSTM-SH-Attention 133.7149 95.9567 0.9753 

CNN-LSTM-MH-Attention 105.6720 73.6905 0.9846 

TCN-GRU-SENET 108.0688 77.8750 0.9838 

TCN-BiGRU-SH-Attention 160.9901 128.6814 0.9640 

CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904 

As shown in Table 6, compared with other models, the R2 of the CNN-BiGRU-MH-Attention 

combination model proposed in this paper improves by 0.6%~2.8% to 0.9904, the RMSE decreases 

by 21%~48% to 83.1903, and the MAE decreases by 27%~58% to 53.4445. the model's superiority 

was verified. In addition, in order to reflect the deviation between the predicted and true values of the 

different models, we recorded the trend of the predicted trend of the different models with respect to 

the true value, which is recorded in Figure 6. 
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Figure 6. Comparison of the predictions of different strategies on the model 

As shown in Figure 6, the black curve represents the true value, the dark blue curve represents the 

CNN-BiLSTM-SH-Attention model prediction trend, the red curve represents the CNN-LSTM-MH-

Attention model prediction trend, the green curve represents the TCN-GRU-SENET model prediction 

trend, the light blue curve represents the TCN-BiGRU- SH-Attention model prediction trend, and the 

yellow curve represents the CNN-BiGRU-MH-Attention model prediction trend. The dark blue curve 

has the largest deviation, the rest of the models perform similarly to the true value, and the yellow 

curve almost completely overlaps withthe true value, thus proving the superiority of the models. 

4.5. Algorithm Validation 

In order to evaluate the effectiveness and applicability of the optimization function in the combined 

ISSA-CNN-BiGRU-MH-Attention model, we compiled the trends of the Loss function changes 

during the training of different models (CNN-BiGRU-MH-Attention, SSA-CNN-BiGRU-MH-

Attention, PSSA-CNN-BiGRU-MH-Attention, ISSA-CNN-BiGRU-MH-Attention) Loss function 

trends during the training process and recorded in Figure 7. 

 

Figure 7. Loss Comparison Chart 

As shown in Figure 7, where the dark blue curve indicates the training loss change trend of CNN-

BiGRU-MH-Attention, the red curve indicates the training loss change trend of SSA-CNN-BiGRU-

MH-Attention, the green curve indicates the training loss variation trend, and the light blue curve 

indicates the training loss variation trend of ISSA-CNN-BiGRU-MH-Attention. Among them, the 

ISSA-CNN-BiGRU-MH-Attention model has the lowest loss curve and the fastest convergence, thus 

verifying the effectiveness of the algorithm. Meanwhile, we record the evaluation metrics of different 

models in Table 7. 
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Table 7. Comparison of Indicators across Models 

Model RMSE MAE R2 

CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904 

SSA-CNN-BiGRU-MH-Attention 69.8733 46.3787 0.9932 

PSSA-CNN-BiGRU-MH-Attention 59.4776 36.8836 0.9951 

ISSA-CNN-BiGRU-MH-Attention 56.9596 34.6078 0.9950 

As shown in Table 7, the CNN-BiGRU-MH-Attention model has an R² of 53.44, RMSE of 0.99, 

and MAE of 83.19, indicating a good fit but large error. The SSA-CNN-BiGRU-MH-Attention model 

improves responsiveness, reducing MAE by 16.02% to 69.87, but RMSE increases slightly by 0.29% 

to 0.99, and R² drops by 13.22% to 46.38. The PSSA-CNN-BiGRU-MH-Attention model, with an 

adaptive update mechanism, further reduces MAE by 14.88% to 59.48, though RMSE increases 

slightly by 0.19% to 0.99, and R² decreases by 20.46% to 36.88. The ISSA-CNN-BiGRU-MH-

Attention model, combining PSO, reduces MAE by 4.23% to 56.96, while RMSE increases slightly 

by 0.04% to 0.99, and R² decreases by 6.17% to 34.61. The results show consistent MAE reduction, 

indicating improved accuracy, despite slight fluctuations in RMSE and R². The adaptive and hybrid 

strategies enhance model performance, confirming the combined model's advantage in reducing load 

forecasting errors. Predicted values compared with real values are shown in Figure 8. 

 

Figure 8. Comparison of predicted values of different models 

As shown in Figure 8, comparison with other models, the predicted value change trend of ISSA-

CNN-BiGRU-MH-Attention model is closest to the real value, thus verifying the effectiveness of the 

algorithm. To evaluate the effectiveness of optimization algorithms, this paper will compare the 

effectiveness of the optimization algorithms in different combination models on the same dataset with 

RMSE, MAE and R2 as evaluation metrics. The experimental results are shown in Table 8. 

Table 8. Comparison of Indicators across Models 

Model RMSE MAE R2 

IWOA-CNN-BILSTM-SH-Attention 84.4377 55.4939 0.9901 

IGWO-CNN-LSTM-MH-Attention 63.0672 47.1101 0.9907 

ISSA-TCN-GRU-SENET 60.8422 49.4437 0.9925 

IPSO-TCN-BIGRU-SH-Attention 88.9362 68.5208 0.9891 

ISSA-CNN-BiGRU-MH-Attention 56.9596 34.6078 0.9950 

As shown in Table 8, compared with other models, the combined ISSA-CNN-BiGRU-MH-

Attention model proposed in this paper improves the R² by 0.30% to 0.65% to reach 0.995, the RMSE 

reduces by 6.38% to 35.96% to reach 56.9596, and the MAE reduces by 26.54% to 49.52% to 34.6078, 

and the superiority of the model was verified. In order to more intuitively reflect the model prediction 

performance, we organize the predicted values of different models to compare with the real values, 

and the results are shown in Figure 9. 
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Figure 9. Comparison of predicted values of different models 

As shown in Figure 9, comparison with other models, the predicted value change trend of ISSA-

CNN-BiGRU-MH-Attention model is closest to the real value, thus verifying the effectiveness of the 

algorithm. 

5. Conclusion 

This paper proposes a combined forecasting model based on ISSA-CNN-BiGRU-MH-Attention 

to achieve high accuracy and timeliness in power load forecasting. First, to address BiGRU's 

limitations in capturing long-term dependencies and handling complex time-series data, we introduce 

a CNN module to extract local features and enhance the model's feature representation. Next, we 

incorporate the MH-Attention module, which uses multi-head self-attention to dynamically assign 

different weights to the input data at various time steps, boosting the model's adaptivity. Finally, we 

propose an improved SSA algorithm for hyperparameter training, enhancing model efficiency. The 

proposed model and algorithm are applied to the dataset of a power plant in Quanzhou, a southern 

region, for validation. The experimental results show that the proposed model has a good load 

forecasting capability, with R2 reaching 0.9950, RMSE reaching 56.9596, and MAE reaching 34.6078, 

and the validity of the model is verified. Compared with other combined prediction models, R2 

improved by 0.3%~0.65%, RMSE decreased by 6.38%~35.96%, and MAE decreased by 

26.54%~49.52%, and the superiority of the model was verified. The ISSA-CNN-BiGRU-MH-

Attention combination model proposed in this paper combines the advantages of optimization 

algorithm, convolutional feature extraction and attention mechanism, and fully exploits the temporal 

features and key patterns in the power load data.  

Despite the model's excellent performance in terms of accuracy, we also note that there is still 

room for improvement in its computational efficiency. In future research, in-depth improvements can 

be made to the optimization algorithm and more efficient hybrid optimization algorithms can be 

explored to enhance the computational efficiency and global search capability in the hyper-parameter 

optimization process. Meanwhile, focusing on the fusion and application of multimodal data will 

further improve the robustness and adaptability of the model to meet the needs of more complex 

application scenarios. 
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