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Abstract. Existing prediction algorithms face challenges in terms of accuracy and training speed,
which hinders high-efficiency, high-accuracy power load forecasting. This paper proposes a
combined prediction model to address these issues. To overcome the Bidirectional Gated Recurrent
Unit (BiGRU)'s limitations in capturing long-term dependencies and handling complex time-series
data, a Convolutional Neural Network (CNN) module is introduced to extract local features and
enhance the model's feature representation. Additionally, a Multi-Head Attention (MH-Attention)
module is incorporated to dynamically assign weights to different time steps, improving adaptivity
and focus on key features. For hyperparameter optimization, an Improved Sparrow Search Algorithm
(ISSA) is proposed, which addresses traditional SSA’s tendency to fall into local optima and slow
convergence by incorporating an adaptive update mechanism and hybrid heuristic strategy. The
model is validated using a power plant dataset from Quanzhou, with results showing excellent
forecasting ability: R2=0.9955, RMSE=56.9596, and MAE=34.6080. Comparison with other models
demonstrates improved performance, with R2 increasing by 0.3%-0.65%, RMSE decreasing by
6.38%-35.96%, and MAE reducing by 26.54%-49.52%. These results confirm the model’s
effectiveness and superiority.

Keywords: Electricity Load Short-term Forecasting, BiGRU, MH-Attention, Sparrow Search
Algorithm.

1. Introduction

Accurate load forecasting is crucial for power system stability and security [1]. As demand grows,
advanced forecasting algorithms are needed to optimize generation, dispatch, and resource use [2].
However, existing algorithms often face challenges in balancing prediction accuracy and
computational efficiency, especially in short-term load forecasting scenarios.

Current power load forecasting algorithms primarily encompass statistical methods [3], machine
learning methods [4] and deep learning methods [5]. In the realm of traditional statistics, Mohammad
et al. [3] employed regression analysis for short-term load forecasting, a method that yielded superior
forecasting outcomes. However, this approach is hindered by its inability to effectively handle
nonlinear relationships and intricate patterns. In contrast, Sanjeev et al. [4] utilised an AutoRegressive
Integrated Moving Average (ARIMA) model to forecast power loads, a model that could capture
certain trends. Nevertheless, its capacity to handle sudden changes is deemed inadequate. Machine
learning methods have been shown to have significant advantages over traditional statistical methods
in terms of improving forecasting accuracy and handling more complex nonlinear data. Siti et al. [4]
employed a support vector machine (SVM) for load forecasting, achieving more accurate results.
However, the model's robustness is compromised in noisy data. Shi et al. [6] utilised random forest
(RF) for short-term load forecasting, though the forecasting accuracy was not as good as that of the
forecasting itself. The accuracy of load forecasting was enhanced, but the training time was lengthier,
which impacted the practical application. Deep learning methods have been shown to be capable of
handling complex high-dimensional data with strong expressive ability and self-learning ability in
power load forecasting. Hua et al. [7] achieved high prediction accuracy by feature extraction of load
data through a Convolutional Neural Network (CNN) model, but the method has difficulty in
modelling long time dependencies. Hardanee et al. [8] used an Recurrent Neural Network (RNN) for
load forecasting, achieving some results, but in the long time series, it is difficult to predict loads.
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While certain effects were observed, the challenge of gradient disappearance in long-time series
prediction was identified. Yang et al. [9] employed an Long Short-Term Memory (LSTM) model for
load prediction, achieving enhanced prediction accuracy. However, the adaptability to diverse load
types was found to be inadequate. Hua et al. [7] implemented a Gated Recurrent Unit (GRU) model
for short-term load prediction, yielding superior results. Nevertheless, the method remains
challenging when it comes to handling the training demands of large-scale data. Lai et al. [10]
employed Bidirectional Gated Recurrent Unit (BiGRU) for load forecasting, yielding substantial
results, however, the training process remains time-consuming. Consequently, there is an urgent need
to develop more efficient prediction models to meet the demand for high accuracy, real-time, and
large-scale data processing in modern power systems.

The prevailing power load forecasting model is a combination model, which enhances the
forecasting accuracy by integrating sub-modules with different functions. However, the integrated
model generally has a greater number of parameters, which results in a reduction in the efficiency of
hyper-parameter training. In addressing this challenge, Konyrbaev et al. [11] employed Bayesian
optimization to optimize the hyperparameters of the combined model, thereby enhancing the training
efficiency. However, this method is constrained by its limited adaptability to high-dimensional spaces
and its substantial computational demands. Aqueel et al. [12] used genetic algorithm (GA) to optimize
the hyperparameters of the combined model, which improves the training speed, but the method is
prone to falling into local optimal solutions, which limits the potential for further performance
enhancement. In contrast, many researchers have attempted to optimize the hyperparameters using
heuristic methods. Jiang et al. [13] utilised the particle swarm optimization (PSO) algorithm to
enhance the hyperparameters of combinatorial models, thereby improving the training efficiency.
However, the method was slow to converge and exhibited limited accuracy when confronted with
complex objective functions. In contrast, Phanden et al. [14] employed the simulated annealing (SA)
algorithm for hyperparameter optimization, circumventing the predicament of local optimal solutions,
which curtails performance. This approach, however, is sluggish to converge and inefficient in large-
scale problems, despite its capacity to evade local optima. Recent advancements in the utilisation of
optimization algorithms for hyperparameter optimization have yielded encouraging outcomes. Li et
al. [15] proposed an innovative approach by employing the whale optimization algorithm (WOA) to
enhance the training efficiency of a combined model. However, the method encounters certain
limitations when confronted with intricate constraints. Similarly, Tang et al. [16] utilised the Sparrow
Search Algorithm (SSA) to optimize the hyperparameters of the combined model, thereby markedly
enhancing the training efficiency. Nevertheless, the method lacks stability and is overly simplistic.
However, the stability and global search capability of this method still need to be further improved.
Although intelligent optimization algorithms improve the training efficiency to a certain extent, they
generally suffer from slow convergence speed and the tendency to fall into local optimal solutions.
Therefore, there is an urgent need to develop more efficient optimization algorithms for the hyper-
parameter training process of combinatorial models to meet the demand for high accuracy and fast
training for power load forecasting.

This paper proposes a combined model using an Improved Sparrow Search Algorithm (ISSA)-
CNN-BiIGRU-MH-Attention to address accuracy and timeliness challenges [16]. The model
integrates CNN for local feature extraction, BiGRU for long-term dependencies, and MH-Attention
for key feature focus. An enhanced SSA optimizes the hyperparameter process with an adaptive
update mechanism and hybrid heuristic strategy. The model offers high-precision predictions, better
training efficiency, and flexibility for large-scale real-time forecasting in power systems.

2. Combined prediction model

This paper proposes a combined forecasting model based on CNN-BiGRU-MH-Attention to meet
the demands for high accuracy and timeliness in power load forecasting. First, to address the
limitations of the BiGRU algorithm in capturing long-term dependencies and handling complex time-
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series data, a CNN module is introduced to enhance the model's ability to handle short-term
dependencies. The next challenge is the inability of the CNN-BiGRU module to effectively focus on
the most important features in the input data. To overcome this, the MH-Attention module is added
to dynamically assign varying weights to input data at different time steps, thereby improving the
model's adaptability and ability to focus on key features. The proposed combined model effectively
captures the time-series characteristics and complex nonlinear relationships of power loads,
improving the accuracy and stability of short-term load forecasting. It is well-suited for power system
scheduling and load management applications, as demonstrated in Figure 1.
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Figure 1. Structure of CNN-BiGRU-MH-Attention combined prediction model

2.1. CNN

The CNN [7] module captures the temporal change pattern of the data by extracting local features
in the input data. Through convolutional operations, it can automatically learn the local correlations
between different time steps, enabling the model to better recognise short-term dependencies and
improve the response to power load fluctuations. The features learned by each convolutional kernel
are shared throughout the input data, thereby reducing the number of parameters and enhancing the
training efficiency of the model.

The input data is represented by a sequence X=[X1, X2,..., Xt], where X; denotes the power load data
at time step i. The fundamental formulation of the convolution operation is as follows:

K
Yi = ZWk Xiaka T 1)
kL

Where vyi is the output feature after convolution, wk is the parameter of the convolution kernel, b
is the bias term, K is the length of the convolution kernel, and Xi+«-1 is the local window data in the
input sequence. The 1D convolution operation involves the gradual movement of the convolution
kernel, wg, over the input data, thereby extracting local features in a stepwise manner. The reiteration
of this process, through multiple convolution operations, leads to the generation of varying levels of
feature representations. Consequently, these higher levels of feature representation serve to enhance
the feature representation of the model.

2.2. BiGRU

BiGRU [10] enhances RNN technology by effectively addressing long-term dependency
challenges in time-series data. It processes input data through both forward and reverse GRU
networks. The outputs from both directions are then merged to form a comprehensive representation
of timing features. The BIGRU model consists of two GRU units: one for forward sequences and the
other for reverse sequences, each with update and reset gates to regulate the flow of information
directionally. The reset gate r; for the forward GRU is calculated as follows:

r=ocW,x +Uh_) 2)
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Where 6 is the sigmoid activation function, W and Uy are the weight matrices, X is the input of
the current moment, and h.1 is the output of the previous moment. The update gate Z: controls how
much information is retained at the current moment, its formula is:

Z, =0 (W,x,+U,h, »D (3)
Candidate Hidden State ﬁt Calculation formula:
h, = tanh(W,x, +U, (1, h,.,)) )

Where tanh is the hyperbolic tangent function, Wy and Uy are the weight matrices, and r¢- het
denotes the gating value of the hidden state at the previous moment. The final hidden state h; is
calculated by the formula:

ht :(1_ Zt)'ht—l"'zt'ﬁt (5)

The computation of the reverse GRU is similar to the forward GRU, except that the time order is
reversed and the processing is completely symmetric with the forward GRU. BiGRU merges the
forward and reverse hidden states to get the final bi-directional hidden state:

htbi = [ht ; htbaCk] (6)

Where [-,-] indicates that the forward and reverse hidden states are stitched together to form a
richer representation.

2.3. MH-Attention

The Multi-Headed Attention mechanism [17] addresses computational inefficiency and inadequate
long-term dependency capture in traditional sequence models. It allows the model to focus on
important information at different locations, enhancing its ability to learn complex patterns. Multiple
attention heads compute in parallel to capture different features. Each query vector calculates a dot
product with all key vectors to obtain a correlation score, which is processed by Softmax to get
attention weights. The value vectors are weighted and summed based on these weights. The results
from multiple heads are concatenated to produce the final output. Assuming an input sequence X=[Xx1,
X2,..., Xn], cOmpute the query, key and value vectors for each element, compute the attention weights,
and perform data splicing to obtain the multi-head attention output. Specific steps include: input data
is linearly transformed with the weight matrix with the formula:

Q = XWq (7)
K = XWk (8)
V = XWy 9)

Where Wo, Wk and Wv are the learned weight matrices. Calculating Attention Weights: for
each query, the relevance is measured by calculating the dot product of the query and the keys, scaled,
and then the normalized weights are obtained by Softmax. The formula for this is:

QK'

\
Nk
QKT

Where 0 is the dot product of the query and key, dk is the dimension of the key, and the

Attention(Q, K,V) = soft max(

(10)

Softmax operation ensures that all weights sum to 1. Multi-head Attention: enables the model to learn
different subspace features by computing multiple attention heads in parallel. Each attention head has
an independent query, key, and value, and computes the respective outputs using the above formulas.
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These outputs are then stitched together and linearly transformed to obtain the final multi-head
attention output. The formula for this is:

MultiHead(Q, K,V) = Concat(head1, head>, ..., headn)Wo (11)

Where headi = Attention(QWe, KWwi,VWv) = \WWo are the output weight matrices obtained from
learning and h is the number of attention heads.

The CNN-BiGRU-MH-Attention model proposed in this paper is a combined model, which has
more number of parameters compared to BIGRU to better capture complex temporal features and
nonlinear relationships, but it also reduces the parameter training efficiency of the model. Currently,
the mainstream hyperparameter optimization algorithms are dominated by heuristic algorithms, but
these algorithms are slow to converge and inefficient when dealing with complex objective functions
or dealing with large-scale problems.

3. Improved SSA algorithm

This paper introduces an enhanced SSA algorithm for optimizing the hyperparameter search
process of the CNN-BiGRU-MH-Attention combined model. Traditional SSA algorithms often
struggle with high-dimensional and complex problems, tending to converge to local optima.
Additionally, the search process is rigid in terms of step size and direction, which slows down
convergence. To address these issues, we propose an adaptive update mechanism and a hybrid
heuristic strategy. The adaptive update mechanism dynamically adjusts step size and search direction
based on the current fitness value of individual sparrows, preventing overly large or small step sizes.
This improves the global search capability and accelerates convergence. The hybrid heuristic strategy
combines the global search ability of PSO with the local search advantages of SSA, enhancing the
algorithm's performance in high-dimensional spaces. The enhanced SSA algorithm significantly
improves convergence speed, avoids local optima, and increases search accuracy.

3.1. Traditional SSA algorithm

The SSA [16] follows these steps: Initialization: A population of sparrows is randomly generated,
with each individual representing a potential solution. Adaptation Evaluation: Each sparrow’s
adaptability is evaluated, reflecting the quality of the solution, with better-adapted sparrows
considered better solutions. Behavioral Update: Sparrows decide between global exploration or local
exploitation based on their fitness. Better-adapted individuals choose local exploitation, adjusting the
search direction, while less adapted ones perform global exploration.

Observer Update: Observers search for potential high-quality solutions around sparrows and
follow promising individuals, mainly identifying local optima. In the traditional SSA algorithm, the
position and velocity are updated by the following equations: position update: the current position X;
of each sparrow is updated by the formula:

X =x vt (12)

Where X/ denotes the current position of the i-th sparrow in generationt. Vi denotes the speed

of the i-th sparrow in generation t+1. Speed Update: Sparrow's speed update formula is adjusted
according to its exploratory and exploitative behaviors, and the common update strategies are as
follows:

Vipr1 = W'Vit +C-h- (Xéest - X|t) +C ol (X;|0b6| - X|t) (13)

Where W is the inertia weight, ¢, and c, are the acceleration constants, r, and r, are the
random numbers, X is the individual optimal solution, Xy is the global optimal solution.
Behavioral switching: Individual sparrows decide whether to explore (global search) or exploit (local
search) based on their fitness values. If the individual's current fitness is poor, it will perform more
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extensive exploration behavior, if it is better fit, the individual will perform local exploitation to fine-
tune the search of the nearby solution space.

SSA has some limitations: it often lacks flexibility, leading to confinement in specific search
regions, particularly with fixed step sizes and directions, resulting in inefficiency and lower solution
quality. Additionally, SSA relies on a single local search strategy, limiting its global search ability.
This inefficiency causes slow convergence or local optima in high-dimensional problems,
highlighting the need for improvements in the algorithm.

3.2. Improvement strategies

(1) Adaptive updating mechanism

The adaptive update mechanism [18] adjusts the step length and search direction based on each
sparrow's fitness value, improving search flexibility and efficiency. In this mechanism, step size and
direction are dynamically adjusted. Sparrows with higher fitness may expand the search space, while
those with lower fitness focus on more promising areas by reducing step size. Fitness Calculation:
Fitness is evaluated using the objective function, indicating the sparrow’s position in the solution
space. Dynamic Step Size Adjustment: Step size is increased for higher fitness sparrows and
decreased for lower fitness ones, ensuring efficiency. Search Direction Adjustment: The search
direction is modified based on fitness, optimizing the search strategy and improving overall search
efficiency and accuracy.

Let the position of the individual sparrow be X, its fitness value be f(x,), and the step size be

AX , then the update formula for the step size under the adaptive update mechanism is:

. f (Xbest)_ f (Xt)
f (Xbest)

Where AX, is the adjusted step length of the current sparrow individual, 77 is the constant
controlling the change of step length, f(X.) is the fitness value of the global optimal solution,

f(x,) isthe fitness value of the current sparrow individual. The step size AX, is determined by the

fitness difference between the current sparrow individual and the global optimal individual, and the
individual with larger fitness difference will get a larger step size in order to expand the search space.
The search direction update formula is:

AX =7 (14)

new

X=X +AXI ’ Slgn(f (Xt) —f (Xbest)) (15)

Where x™ isthe updated sparrow position, sign(f(x,)— f(X,.)) denotes the search direction.

With these two formulas, the sparrow's step size and direction can be dynamically adjusted
according to the current fitness value, which makes the search process more intelligent and avoids
the fixed search strategy in traditional SSA, thus improving the search efficiency and the quality of
the final solution.

(2) Hybrid heuristics

The hybrid heuristic strategy [19] integrates the SSA and PSO algorithms. The PSO algorithm
explores the solution space broadly, leveraging the global search ability of the particles, while the
SSA algorithm focuses on fine-tuning within the local region through local search. This combination
enables the optimization process to search globally without losing accuracy and to refine solutions
locally without easily getting stuck in local optima. The hybrid heuristic strategy operates as follows:
Global search (PSO part): The PSO algorithm is used to explore the entire solution space, identifying
potential superior solutions through its global search strategy. Local search (SSA part): The SSA
algorithm then refines these solutions by conducting a more detailed search within the local region to
improve their accuracy.

An alternative mechanism proposes alternating between the two algorithms: the SSA refines the
solutions after each PSO global search, and PSO performs another global search after each SSA

245



Highlights in Science, Engineering and Technology ESAC 2025
Volume 134 (2025)

optimization. This alternating mechanism ensures that the global search avoids falling into local
optima, while the local search continuously enhances the accuracy of the solutions, ultimately leading
to a better global optimal solution. The particle swarm optimization algorithm searches for the optimal
solution by the position and velocity of the particles. The formulas are as follows: velocity update
formula:

V_newzw,vi+Cl.r1-(pi—Xi)+C2~r2~(g_Xi) (16)

Where v™ is the update speed of the i-th particle, w is the inertia weight, c1 and c are the
learning factors, ry and r2 are the random numbers, p; is the individual best position of the i-th particle,
g is the global best position, Xx; is the particle current position. The position update formula:

Xinew — Xi ‘Vinew (17)

Where x™ is the position update of the particle. In the hybrid heuristic strategy, the sparrow
performs local search tuning through its fitness value and position:
. f(Xbest)_ f(xt)

f (Xbest)

Where Ax, is the step size adjustment of the current sparrow individual, f(X.) is the fitness
value of the global optimal solution, f(x,) is the fitness value of the current sparrow individual.
The position update formula is:

AX, =7 (18)

new

X =X +AX -sign( f (Xt) —f (Xbest)) (19)

Where sign(f(x,)— f(X,.y)) determines the direction of the update. The hybrid heuristic

strategy enhances the optimization by alternating the update strategies of PSO and SSA. Suppose that
at a certain stage, after the PSO algorithm performs a global search, the sparrow search algorithm
makes local adjustments based on this formula:

thew —a- XtPSO + (1_ 0{) . XtSSA (20)

Where x7°° is the position obtained by particle swarm optimization. x** is the position

adjusted by sparrow search, « is the weight coefficient, which is used to balance the effects of PSO
and SSA.

3.3. Algorithm optimization process

Figure 2 illustrates the flowchart for optimizing the CNN-BiGRU-MH-Attention model using the
ISSA optimization algorithm.

As shown in Figure 2, the model's basic parameters are first entered, influencing the optimization
process. The data is divided into training, validation, and test sets for model training, hyperparameter
tuning, and performance evaluation, respectively. In the ISSA optimization, the sparrow positions
represent model parameters and are randomly initialized to start the search. The adaptation value,
based on model performance, is calculated, with lower values indicating better models. The adaptive
update mechanism adjusts step size based on fitness: it increases step size for higher fitness and
decreases it for lower fitness to focus on promising regions. The position of sparrows is updated using
the formula. In the hybrid heuristic strategy (PSO+SSA), a mutation operation generates new
solutions, followed by a crossover to merge mutated vectors with the target solution, and a selection
operation to choose the optimal solution as the new sparrow position. After each iteration, the
parameters are updated and passed to the CNN-BIGRU-MH-Attention model for training. The
process terminates when the maximum iterations are reached or adaptation no longer improves, with
the optimal parameters output for the final prediction task.
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Figure 2. Flowchart of optimization algorithm

4. Experimentation and Analysis

4.1. Simulation environment

(1) Data set

In this paper, the power load dataset of a power plant in Quanzhou, a southern region, from 2016-
1-1 0:00:00 to 2016-1-31 23:45:00 is selected as a sample, with a total of 2976 data samples and a
sampling frequency of 15 minutes. The training set, test set as well as validation set's are 70%, 20%
and 10% of the total sample size respectively. The input variables are data related to electricity
consumption of power load.

(2) Simulation environment

The computer environment used in this paper is shown in Table 1.

Table 1. Experimental environment

Parameter
Intel(R) Core(TM) i9-14900HX 2.20 GHz
NVIDIA GeForce RTX 4070 Laptop GPU 8GB
32GB
Python 3.8
Pycharm 2024.2.1

Parameter Name
CPU
Video card
Random access memory (RAM)
Code language
Hardware
(3) Parameterization
The model parameters used in this paper are shown in Tables 2 and 3.

Table 2. Parameters related to the combined model

Model Parameter Name Parameter value
Time_step 12
Filters 128
Kernel_size 3
Batch_size 16
Epochs 100
Learning rate 0.001
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Table 3. ISSA related parameters

Model Parameter Name Parameter value
Population_size 50
Max_iterations 100
Alpha 0.5
Beta 0.7
Inertia_weight 0.9
Cognitive_weight 2.0
Social weight 2.0

(4) Assessment indicators

In order to assess the accuracy of the model, Root Mean Square Error (RMSE), Mean Absolute
Error (MAE) and coefficient of determination: R? (R-Square) are chosen as the assessment indexes
of the model in short-term power load forecasting, RMSE and MAE are the core indexes for assessing
the model forecasting accuracy, the closer its value is to 0, the higher the forecasting accuracy of the
surface model and the smaller the error. R? reflects the goodness of the model's fitting, the closer its
value is to 1, the better the model's fitting effect is, and the specific calculation formula is as follows:

RMSE:,/%i(Yi _B;i)z (21)

m

MAE == 3"ty —ﬁ)‘ (22)
D
R?=1-T — — (23)

20— ¥)

Where n is the total number of test samples, Y; denotes the true value of the i-th sample point,

and §i denotes the predicted value of the i-th sample point. V, denotes the mean of the i-th sample

point.

4.2. Model validation
In order to verify the validity and applicability of the proposed model, we have compiled the trend
of the Loss function during the training of the model and recorded it in Figure 3.
Train and Validation Loss Curve

0.0175 —— Train Loss
—— Validation Loss

0.0150

0.0125

0.0100

Loss

0.0075

0.0050

0.0025

0.0000

o 10 20 30 50 60 70 8o

Epoﬁhs
Figure 3. Algorithm Loss Diagram
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As shown in Figure 3, the Loss curve shows a decreasing trend with the continuous increase of
epoch. The curve shows a large decline in the early stage, when the epoch reaches about 50 the curve
decline slows down, when the epoch reaches about 100 the curve tends to stabilize, the value tends
to be close to 0, indicating that the model convergence is good, there is no obvious overfitting or
underfitting phenomenon, the training process is effective, the model finds the optimal parameter
selection, the model in the training process can effectively reduce the error and achieve a better
performance. In addition, in order to represent the deviation of the model's predicted and true values,
we organized the trends of the predicted and true values and recorded them in Figure 4.

ISSA-CNN-BiGRU-MH-Attention

5000 1 —— Actual Values
—— Predicted Values

w
&
=]
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Predict results

2500 A
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Figure 4. Comparison of real values and predicted values

As shown in Figure 4, the red curve represents the true value, and the blue curve represents the
predicted value of the ISSA-CNN-BiGRU-MH-Attention combination model, and the predicted
value of the combination model is very close to the true value, which indicates that the model has a
high degree of fitting, and that the model is able to accurately capture the features of the data with
strong accuracy and generalization performance, and it has a good load prediction capability.

Table 4. Indicators for model evaluation

Model RMSE MAE R?
Training 56.9596 34.6080 0.9955
Test 56.9584 34.6072 0.9934

The combined model evaluation metrics are shown in Table 4. The RMSE metric of the model
reaches 0.9950 on the training set and 0.9934 on the test set, the MAE metric reaches 56.9596 on the
training set and 56.9584 on the test set, and the R? metric reaches 34.60780 on the training set and
34.6072 on the test set, which can be reflected that the model has a good metrics evaluation result,
and the model performance is good. The performance of the model is good. In summary, the Loss
curve of the model converges and tends to 0, and the true value and the predicted value are very close
to each other, and at the same time, the model has good evaluation indexes on both the training set
and the test set, thus verifying the validity and applicability of the model.

4.3. Ablation experiments

To evaluate the contribution effect of individual modules in the proposed model, this paper will
compare the performance of different combination modules (BiGRU, CNN-BiGRU, CNN-BiGRU-
MH-Attention) on the same dataset with RMSE, MAE and R? as the evaluation metrics. The
experimental results are shown in Table 5.

Table 5. Comparison of Indicators across Models

Model RMSE MAE R?
BiGRU 117.9121 82.7217 0.9807
CNN-BiGRU 99.0951 70.6370 0.9864
CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904
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As shown in Table 5, the BIGRU model's test set results have an R=of 0.9807, RMSE of 117.91,
and MAE of 82.72, indicating high fit but relatively large error. The combined CNN-BiGRU model
improves response to power load fluctuations, reducing RMSE by 15.96%, MAE by 14.61%, and
increasing R=y 0.58%. Introducing the multi-attention mechanism, the CNN-BiGRU-MH-Attention
model further improves performance: RMSE decreases by 16.05% to 83.19, MAE drops by 24.34%
to 53.44, and R3ncreases by 0.41% to 0.9904. These results show that optimizing the model structure
reduces prediction error and improves fit. The inclusion of CNN and MH-Attention effectively
enhances model performance. Deviations between predicted and true values for different models are
shown in Figure 5.

Comparison of Models

spoo 4 —— Actual Values
—— BIGRU

CNN-BIGRU
—— CNN-BIGRU-MH-Attention

Predicted Values

o 100 200 300 400 500 600

Predicted Samples
Figure 5. Comparison of different combination models
As shown in Figure 5, as the strategies are continuously introduced, the prediction curves fit more

and more with the curves of the true values, and the final prediction trend fits almost perfectly with
the true value trend, thus proving the effectiveness of each introduced strategy.

4.4. Comparative experiments

In order to verify the superiority of the combined CNN-BiGRU-MH-Attention model for short-
term electricity load forecasting, this paper will compare the performance of differentforecasting
models on the same dataset, and the comparison models include: the CNN-BiLSTM-SH-Attention,
the CNN-LSTM-MH-Attention, the TCN-GRU-SENET, TCN-BiGRU-SH-Attention, and CNN-
BiGRU-MH-Attention. and RMSE, MAE, and R? are used as evaluation metrics. The experimental
results are shown in Table 6.

Table 6. Comparison of evaluation metrics of different strategies on the model

Model RMSE MAE R?
CNN-BIiLSTM-SH-Attention 133.7149 95.9567 0.9753
CNN-LSTM-MH-Attention 105.6720 73.6905 0.9846
TCN-GRU-SENET 108.0688 77.8750 0.9838
TCN-BiGRU-SH-Attention 160.9901 128.6814 0.9640
CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904

As shown in Table 6, compared with other models, the R? of the CNN-BiGRU-MH-Attention
combination model proposed in this paper improves by 0.6%~2.8% to 0.9904, the RMSE decreases
by 21%~48% to 83.1903, and the MAE decreases by 27%~58% to 53.4445. the model's superiority
was verified. In addition, in order to reflect the deviation between the predicted and true values of the
different models, we recorded the trend of the predicted trend of the different models with respect to
the true value, which is recorded in Figure 6.
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Figure 6. Comparison of the predictions of different strategies on the model

As shown in Figure 6, the black curve represents the true value, the dark blue curve represents the
CNN-BILSTM-SH-Attention model prediction trend, the red curve represents the CNN-LSTM-MH-
Attention model prediction trend, the green curve represents the TCN-GRU-SENET model prediction
trend, the light blue curve represents the TCN-BiGRU- SH-Attention model prediction trend, and the
yellow curve represents the CNN-BiGRU-MH-Attention model prediction trend. The dark blue curve
has the largest deviation, the rest of the models perform similarly to the true value, and the yellow
curve almost completely overlaps withthe true value, thus proving the superiority of the models.

4.5. Algorithm Validation

In order to evaluate the effectiveness and applicability of the optimization function in the combined
ISSA-CNN-BiGRU-MH-Attention model, we compiled the trends of the Loss function changes
during the training of different models (CNN-BiGRU-MH-Attention, SSA-CNN-BiGRU-MH-
Attention, PSSA-CNN-BiGRU-MH-Attention, ISSA-CNN-BiGRU-MH-Attention) Loss function
trends during the training process and recorded in Figure 7.
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Figure 7. Loss Comparison Chart

As shown in Figure 7, where the dark blue curve indicates the training loss change trend of CNN-
BiGRU-MH-Attention, the red curve indicates the training loss change trend of SSA-CNN-BiGRU-
MH-Attention, the green curve indicates the training loss variation trend, and the light blue curve
indicates the training loss variation trend of ISSA-CNN-BiGRU-MH-Attention. Among them, the
ISSA-CNN-BiIGRU-MH-Attention model has the lowest loss curve and the fastest convergence, thus
verifying the effectiveness of the algorithm. Meanwhile, we record the evaluation metrics of different
models in Table 7.
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Table 7. Comparison of Indicators across Models

Model RMSE MAE R?
CNN-BiGRU-MH-Attention 83.1903 53.4445 0.9904
SSA-CNN-BiGRU-MH-Attention 69.8733 46.3787 0.9932
PSSA-CNN-BiGRU-MH-Attention 59.4776 36.8836 0.9951
ISSA-CNN-BiGRU-MH-Attention 56.9596 34.6078 0.9950

As shown in Table 7, the CNN-BiGRU-MH-Attention model has an R=of 53.44, RMSE of 0.99,
and MAE of 83.19, indicating a good fit but large error. The SSA-CNN-BiGRU-MH-Attention model
improves responsiveness, reducing MAE by 16.02% to 69.87, but RMSE increases slightly by 0.29%
to 0.99, and R=2drops by 13.22% to 46.38. The PSSA-CNN-BiIGRU-MH-Attention model, with an
adaptive update mechanism, further reduces MAE by 14.88% to 59.48, though RMSE increases
slightly by 0.19% to 0.99, and R=decreases by 20.46% to 36.88. The ISSA-CNN-BiGRU-MH-
Attention model, combining PSO, reduces MAE by 4.23% to 56.96, while RMSE increases slightly
by 0.04% to 0.99, and R=decreases by 6.17% to 34.61. The results show consistent MAE reduction,
indicating improved accuracy, despite slight fluctuations in RMSE and R=2The adaptive and hybrid
strategies enhance model performance, confirming the combined model's advantage in reducing load
forecasting errors. Predicted values compared with real values are shown in Figure 8.
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Figure 8. Comparison of predicted values of different models

As shown in Figure 8, comparison with other models, the predicted value change trend of ISSA-
CNN-BiGRU-MH-Attention model is closest to the real value, thus verifying the effectiveness of the
algorithm. To evaluate the effectiveness of optimization algorithms, this paper will compare the
effectiveness of the optimization algorithms in different combination models on the same dataset with
RMSE, MAE and R? as evaluation metrics. The experimental results are shown in Table 8.

Table 8. Comparison of Indicators across Models

Model RMSE MAE R?
IWOA-CNN-BILSTM-SH-Attention 84.4377 55.4939 0.9901
IGWO-CNN-LSTM-MH-Attention 63.0672 47.1101 0.9907
ISSA-TCN-GRU-SENET 60.8422 49.4437 0.9925
IPSO-TCN-BIGRU-SH-Attention 88.9362 68.5208 0.9891
ISSA-CNN-BiGRU-MH-Attention 56.9596 34.6078 0.9950

As shown in Table 8, compared with other models, the combined ISSA-CNN-BiGRU-MH-
Attention model proposed in this paper improves the R=hy 0.30% to 0.65% to reach 0.995, the RMSE
reduces by 6.38% to 35.96% to reach 56.9596, and the MAE reduces by 26.54% to 49.52% to 34.6078,
and the superiority of the model was verified. In order to more intuitively reflect the model prediction
performance, we organize the predicted values of different models to compare with the real values,
and the results are shown in Figure 9.
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Figure 9. Comparison of predicted values of different models
As shown in Figure 9, comparison with other models, the predicted value change trend of ISSA-
CNN-BiGRU-MH-Attention model is closest to the real value, thus verifying the effectiveness of the
algorithm.

5. Conclusion

This paper proposes a combined forecasting model based on ISSA-CNN-BiGRU-MH-Attention
to achieve high accuracy and timeliness in power load forecasting. First, to address BiGRU's
limitations in capturing long-term dependencies and handling complex time-series data, we introduce
a CNN module to extract local features and enhance the model's feature representation. Next, we
incorporate the MH-Attention module, which uses multi-head self-attention to dynamically assign
different weights to the input data at various time steps, boosting the model's adaptivity. Finally, we
propose an improved SSA algorithm for hyperparameter training, enhancing model efficiency. The
proposed model and algorithm are applied to the dataset of a power plant in Quanzhou, a southern
region, for validation. The experimental results show that the proposed model has a good load
forecasting capability, with R? reaching 0.9950, RMSE reaching 56.9596, and MAE reaching 34.6078,
and the validity of the model is verified. Compared with other combined prediction models, R?
improved by 0.3%~0.65%, RMSE decreased by 6.38%~35.96%, and MAE decreased by
26.54%~49.52%, and the superiority of the model was verified. The ISSA-CNN-BiGRU-MH-
Attention combination model proposed in this paper combines the advantages of optimization
algorithm, convolutional feature extraction and attention mechanism, and fully exploits the temporal
features and key patterns in the power load data.

Despite the model's excellent performance in terms of accuracy, we also note that there is still
room for improvement in its computational efficiency. In future research, in-depth improvements can
be made to the optimization algorithm and more efficient hybrid optimization algorithms can be
explored to enhance the computational efficiency and global search capability in the hyper-parameter
optimization process. Meanwhile, focusing on the fusion and application of multimodal data will
further improve the robustness and adaptability of the model to meet the needs of more complex
application scenarios.
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