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Abstract. This paper explores the use of a deep learning approach combining a ResNet50 model 
and CBAM-SE (Convolutional Block Attention Module with Squeeze-and-Excitation) for bolt fault 
diagnosis in a noisy industrial environment. The aim of the study is to improve the model's immunity 
to different noise conditions, covering fluid noise, impact noise, periodic noise and mixed noise. 
Experimental results show that the ResNet50+CBAM-SE model outperforms the conventional 
ResNet50 and CNN models in all noise cases, especially when dealing with complex noise 
disturbances.The addition of the CBAM-SE module enables the model to better focus on key 
features, thus improving its robustness and classification performance. This study demonstrates the 
potential of deep learning models with attention mechanisms for fault diagnosis, especially in 
industrial settings. 
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1. Introduction  

High-strength bolts are widely used in petrochemical equipment for connecting critical 

components such as reactors, pipelines, pump bodies and fans, which are subject to complex vibration 

and dynamic loads [1]. During long-term operation, bolts may loosen, slip, or even fracture, which in 

turn leads to structural failure [2]. Therefore, experimental research on bolts under vibration 

conditions can effectively identify and diagnose their potential damage and thus ensure the safety and 

reliability of the equipment. 

To address this issue, recent studies have gradually focused on the physical characterization and 

condition monitoring of bolt assemblies to improve the accuracy and reliability of loosening 

detection.Shaheen, Shaheen, M.A.,Foster,A. S., Cunningham, L.S.,&Afshan,S. [3] investigated the 

performance of bolt assemblies in structural steel connections at elevated temperatures, evaluated the 

strength reduction factors specified in the European and U.S. standards, and found that they were 

often too conservative for the high temperature range and recommended that they be updated. The 

study also discussed the effects of fire on the microstructure of steel bolts and proposed a new 

equation based on experimental results. The study also discusses the effect of fire on the 

microstructure of steel bolts and proposes a new equation for the discount factor based on 

experimental results. Li, D., Nie, J. H., Wang, H., & Ren, W. X. [4] investigated lifecycle condition 

monitoring of high strength bolted joints, proposing a physically guided deep learning framework 

that combines supervised and unsupervised learning to diagnose multiple damage mechanisms and 

identify different loading phases using acoustic emission (AE) data. They successfully identified four 

loading stages such as static friction, slip, confinement and failure and their overlapping damage 

mechanisms by means of convolutional neural network (CNN) and Gaussian mixture model (GMM). 

Ramasso, E., Verdin, B., & Chevallier, G. [5] proposed the ORION-AE dataset, which collects raw 

data from five different fastening conditions by means of three different acoustic emission transducers 

and laser vibrometer streams for challenging ultrasonic data interpretation methods and signal 
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processing techniques. They created this dataset as a benchmark to support the comparison of data-

driven methods in material characterization and structural health monitoring. Qin, X., Peng, C., Zhao, 

G., Ju, Z., Lv, S., Jiang, M., ... & Jia, L. [6] investigated the full lifecycle monitoring of bolt loosening, 

proposing an improved vibro-acoustic modulation (VAM) method capable of providing earlier 

warnings at the stage of thread loosening. It was found that the nonlinear effect of bolt loosening was 

related to the applied torque, and a monitoring method based on the nonlinear and linear transfer 

energy indices was proposed, which helps to improve the reliability of the VAM technique in the 

early loosening monitoring of bolts. 

Existing research methods mainly focus on the analysis of bolt signal characteristics, which are 

usually carried out under a single noise type or a specific working condition. However, these methods 

generally suffer from noise sensitivity and are susceptible to noise interference, which affects 

diagnostic accuracy and reliability. To cope with the complex noise interference and feature 

extraction challenges in industrial environments, this study innovatively constructs the 

ResNet50+CBAM-SE deep learning framework. The model achieves performance enhancement 

through a dual-module synergetic architecture: the Convolutional Block Attention Module (CBAM) 

adopts a spatial-channel dual-path attention mechanism, which dynamically enhances the weight 

distribution of key features; and the Squeeze-and-Excitation (SE) module realizes the adaptive 

calibration of the feature response through the global modeling of the feature channels. The overall 

methodology flowchart is shown in Fig. 1. These two modules form a complementary mechanism - 

CBAM performs feature selection in the pixel dimension to effectively suppress high-frequency noise 

interference; SE implements feature enhancement in the channel dimension to ensure the salient 

expression of diagnostically relevant features. The complementary mechanism of the two makes the 

model more robust in complex noise scenarios, breaking through the performance bottleneck of 

traditional methods in such environments. 

  

Fig. 1. Flowchart. 

2. Experimental setup and data acquisition 

The test stand consists of a torque wrench, a frame, a flange, M10 bolts, and an FF180 eccentric 

vibration motor, as shown in Table 1, in which the frame transmits the vibration force and provides 

the loading state through bolting, as shown in Fig. 2. The test stand has the following features: the 

distance between the transducer and the bolt can be changed, the measurement angle between the 

transducer and the bolt can be adjusted, and the bolt is easy to replace. During operation, the test stand 

maintains overall stability, operates with low noise and slight vibration, and meets the expected 

design requirements. 
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Fig. 2. Experimental setup. 

Table 1. Key parameters of the FF180 motor 

Parameters (Be) worth 

Operating voltage 3v-12v 

Number of revolutions per minute 3000-12000RPM 

Amps 100-300mA 

Overall dimensions 15mmx20mm 
 

In order to study the acoustic emission characteristics of bolts under different preload conditions, 

five preload conditions were set up: 0 Nm, 20 Nm, 35 Nm, 49 Nm and 60 Nm, of which 49 Nm is the 

recommended standard preload for M10 bolts of grade 8.8, as determined according to GB/T 3098.1-

2010. Under each preload condition, four bolts were tested. In the experiment, the bolt flanges were 

fixed to the support block, and the acoustic emission signals under each condition were monitored 

and recorded in real time using an acoustic emission sensor by applying a constant vibration load. To 

ensure the reliability of the results, all tests were repeated several times. 

In the experiments, four types of noise conditions were simulated, including periodic noise, shock 

noise, fluid noise, and combinations of these noise types. These noise conditions were designed to 

simulate disturbances that are common in realistic industrial environments, such as motor and fan 

noise in factory environments (periodic noise), transient noise caused by loose bolts or collisions 

(impact noise), and disturbances from hydraulic systems or airflow (fluid noise),as shown in fig.3. 

For the comparison of noise training models, the ResNet50 + CBAM-SE model, the ResNet50 model, 

and the CNN model were used. By training the models under these complex noise conditions, this 

study verifies the superior noise immunity and robustness of the ResNet50 + CBAM-SE model under 

noise disturbances. 

  
(a)FluidNoise      (b)Impulse noise 

  
(c)Periodic noise     (d)Mixed noise 

Fig. 3 Amplitude-frequency diagram of analog noise signals 
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3. Proposed Methodology 

This section describes ResNet-50 deep residual network in detail. 

3.1. Improvement of ResNet-50 Deep Residual Network  

Gradient vanishing and network degradation are common problems in deep learning training, and 

ResNet-50 effectively solves these problems through residual learning and jump connection, which 

significantly improves the training effect and performance of deep networks. In this paper, we 

combine the vibration features in acoustic emission signals and the improved ResNet-50 model for 

recognizing bolt loosening. To further enhance the model's adaptability to vibration modes and noise 

robustness, CBAM and SE modules are introduced in this paper, as shown in Fig. 5.The CBAM 

module adaptively highlights key features and suppresses noise by learning channel and spatial 

attentional weights, while the SE module enhances the network's attention to important frequency 

features through channel weighting to improve the accuracy of recognition and classification. The 

combination of the two allows ResNet-50 to exhibit enhanced robustness and generalization 

capabilities in complex signal processing tasks. 

The improved ResNet-50 model consists of five phases, as shown in Fig. 4: an initial convolution 

and pooling phase for rapid reduction of the spatial size of the feature map, followed by four main 

phases containing multiple residual blocks for deep feature extraction via convolution, batch 

normalization, CBAM and SE modules, hopping connections, and ReLU activation. The combination 

of these blocks effectively enhances the learning of critical signals and noise suppression, allowing 

each stage to efficiently process complex signal features.  

 

Fig. 4. Improved resnet-50 deep residual network graphs. 

 

Fig. 5. Structure of CBAM module and SE module. Units 

3.2. F1 score  

Accuracy is defined as the ratio of correctly predicted samples to the total number of samples and 

is given by the formula: 

𝐴𝑢𝑢𝑐𝑟𝑎𝑐𝑦 =
𝐶𝑜𝑟𝑟𝑒𝑐𝑡𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

𝑇𝑜𝑡𝑎𝑙𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠
 

Where "Correct Predictions" refers to the samples where the predicted label matches the true label. 
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The loss value is the difference between the predicted category and the true category, given by the 

following formula: 

𝐿𝑜𝑠𝑠 = −
1

𝑁
∑(

𝑖=1

𝑁

𝑦𝑖𝑙𝑜𝑔(𝑦𝑖

^
) + (1 − 𝑦𝑖)𝑙𝑜𝑔(1 − 𝑦𝑖

^
)) 

Where: 𝑦𝑖 is the true label. 𝑦
^

𝑖 is the predicted probability. 

Precision is calculated as the ratio of correctly predicted positive samples to the total predicted 

positive samples and is expressed as: 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

Recall is the ratio of correctly predicted positive samples to the actual positive samples and is 

given by: 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

The F1 score, representing the harmonic means of precision and recall, provides a comprehensive 

measure of the model's ability to correctly identify positive samples and is calculated as: 

𝐹1 =  2 ∙
𝑃𝑟𝑒𝑐𝑒𝑖𝑠𝑜𝑛 ∙ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

TP (True Positive): The number of samples that are predicted as positive and are actually positive. 

FP (False Positive): The number of samples that are predicted as positive but are actually negative. 

TN (True Negative): The number of samples that are predicted as negative and are actually 

negative. 

FN (False Negative): The number of samples that are predicted as negative but are actually positive. 

3.3. Training 

The training process was performed in a laboratory environment as detailed in  

Table 2. Experimental environment Specifically, 150 model iterations were performed using a 

batch size of 16 and an initial learning rate of 0.001, with each cycle consisting of 2400 batches. The 

training parameters are shown in  

Table 3. Training parameters. 

Table 2. Experimental environment 

Hardware environment Software environment 

Memory 16.0 GB System Windows 11 

CPU AMD Ryzen 9 5000 U (3.2 GHz) Environment Pytorch-gpu 1.13 
 

Table 3. Training parameters 

Related parameter Value Meaning 

Batch size 16 Number of pictures per training 

Learning rate 0.001 Initial learning rate 

Epoch 150 Training iteration times 

CUDA Enable Comp 

4. Experimental results and analysis 

4.1. Bolt Acoustic Emission Signal and Analog Noise Signal 

In this study, the acoustic emission signals and analog noise signals of bolts under different preload 

forces were analyzed to explore the differences in their characteristics,as shown in Fig. 6. The 

different signal types reflect the different working conditions and environmental disturbances that 
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may be encountered by the bolts in the working process, and these differences provide reliable data 

support for loosening detection. By comparing the signal waveforms, it is found that the acoustic 

emission signals of bolts under different preloads show different vibration patterns and frequency 

responses, which provides a data basis for the subsequent analysis of the classification accuracy and 

adaptability of the ResNet-50+CBAM-SE model under different damage types. 

  
(a)00Nm            (b)20Nm 

  
(c)35Nm            (d)49Nm 

 
(e)60Nm 

Fig.6 Amplitude-frequency diagram of the acoustic emission signals 

4.2. Comparative performance analysis of different deep learning models 

By analyzing the accuracy performance of the three models under different noise types,as shown 

in Fig.7,the results show that ResNet50+CBAM-SE exhibits significant advantages under all noise 

conditions. Specifically, under fluid noise, the accuracy of ResNet50+CBAM-SE is 97.7%, which is 

higher than the 97.5% of ResNet50 and 94.83% of CNN; under impulse noise, the accuracy of 

ResNet50+CBAM-SE is 97.1%, which is also higher than the 96.33% of ResNet50 and 94.5% of 

CNN; Under periodic noise, the accuracy of ResNet50+CBAM-SE is 97.4%, which is also ahead of 

ResNet50's 96.83% and CNN's 95.33%;under mixed noise, the accuracy of ResNet50+CBAM-SE is 

95.7%, which is also higher than ResNet50's 95.2% and CNN's 94.5%. In summary, the 

ResNet50+CBAM-SE model demonstrates significant advantages in terms of noise adaptation and 

classification accuracy, especially when facing complex noises (e.g., fluid and impulse noises), the 

accuracy is significantly ahead. 

   
(a)ResNet50+CBAM-SE            (b)ResNet50                    (c)CNN 

Fig. 7 Accuracy of the three models under different noise types 
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By analyzing the F1 Score performance of the three models under different noise types, as shown 

in Fig.8, the results show that ResNet50+CBAM-SE exhibits significant advantages under all noise 

conditions. Specifically, under fluid noise, the F1 Score of ResNet50+CBAM-SE is 0.9734, which is 

higher than that of ResNet50's 0.9733 and CNN's 0.9483; under impulse noise, the F1 Score of 

ResNet50+CBAM-SE is 0.9700, which is also higher than that of ResNet50's 0.9633 and CNN's 

0.9533; under periodic noise, ResNet50+CBAM-SE's F1 Score is 0.9767, ahead of ResNet50's 0.9683 

and CNN's 0.9500; under mixed noise, ResNet50+CBAM-SE's F1 Score is 0.9500, which is relatively 

low but still higher than 0.9566 of ResNet50 and 0.9450 of CNN.In summary, the ResNet50+CBAM-

SE model demonstrates significant advantages in noise adaptation and classification accuracy, and 

the F1 Score performs significantly better, especially in fluid noise and periodic noise conditions. 

   
(a)ResNet50+CBAM-SE           (b) ResNet50                    (c)CNN 

Fig. 8 F1 Score for three models with different noise types 

5. Discussion 

This study shows that the ResNet50+CBAM-SE model outperforms the traditional ResNet50 and 

CNN models under different noise conditions. By introducing the CBAM-SE module, the model is 

able to better focus on key features, which improves the adaptability to complex noise (e.g., fluid 

noise, impact noise). In all noise environments, ResNet50+CBAM-SE outperforms in terms of 

accuracy and F1 scores, and the performance improvement is especially noticeable in fluid noise and 

periodic noise. 

Although the performance of ResNet50+CBAM-SE slightly decreases in mixed noise 

environments, it still outperforms the other two models. The possible reason for this is that the 

complexity of the mixed noise has an impact on the model judgment. In the future, the robustness of 

the model under mixed noise can be further optimized or combined with other noise suppression 

techniques to further improve performance. 

In summary, the CBAM-SE module enhances the robustness of the ResNet50 model in industrial 

fault diagnosis, especially in noisy environments, demonstrating the potential of deep learning models 

for application in complex environments. 
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