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Abstract. Optimizing native resources can enhance productivity, improve farmers' living standards 
and promote ecological conservation. The aim of this paper is to analyze the characteristics of crop 
cultivation in North China and propose an optimized cultivation strategy to achieve maximum total 
returns during the period 2024-2030. The study adopts the Sample Average Approximation (SAA) 
method in stochastic optimization, combined with Latin hypercube sampling, to obtain the optimal 
planting plan using linear programming by considering constraints such as crop planting area, crop 
rotation requirements and legume planting. The results show that the optimized planting scheme can 
achieve an increase in average annual income compared with the ideal situation, and the total 
income is increased by 81.46% compared with the pre-optimization situation. The study shows that 
the optimized planting strategy not only improves the economic benefits but also provides a practical 
reference for the future revitalization of the countryside, which is of great potential for application and 
research value. 

Keywords: Crop Planting Optimization Strategy, Linear Programming, Sample Average 
Approximation, Latin Hypercube Sampling. 

1. Introduction 

The development and utilization of local resources is a core component of the rural revitalization 

strategy. By optimizing local resources, rural areas can enhance productivity, improve farmers' living 

standards, and promote ecological conservation and environmental management. Zhang Hao et al. [1] 

studied the optimization of cropping structures in tropical savanna climate irrigation areas based on 

stochastic dynamic programming. They developed an optimization model to reduce the risks 

associated with water resource uncertainty in irrigation planning. Using the Louga irrigation area in 

Senegal as a case study, their research demonstrated that the model effectively optimized cropping 

structures, increasing economic benefits by an average of 137 million CFA per year and significantly 

improving economic returns under extreme drought conditions. Luo Dan et al. [2] proposed a multi-

objective particle swarm-biogeography-based optimization algorithm to address tomato planting 

planning problems. They constructed three objective functions, and simulation results showed that 

the algorithm outperformed traditional evolutionary algorithms in planting planning, yielding 

reasonable planting schemes. 

The North China region, located in northern China, is one of the country’s key agricultural 

production bases. The region's climate, soil, and water resource conditions are favorable for the 

growth of various crops. Wang Fuxin [3] pointed out that there is significant spatial imbalance in 

agricultural land-use efficiency across cities in North China, with the northeastern region showing 

higher growth rates in efficiency, while the southern region lags behind. However, few studies have 

focused on the characteristics of crop planting in mountainous areas of North China to optimize 

planting strategies. 

This paper considers the crop types, time constraints, crop rotation requirements, and planting 

areas of a specific village in North China. It analyzes two scenarios for planting schemes. Scenario 

one assumes an ideal condition (planning based solely on the 2023 planting situation), while scenario 

two incorporates uncertainties in crop expected sales volume, yield per acre, planting costs, and sales 

prices. By employing the sample average approximation method in stochastic optimization and using 

Latin hypercube sampling to account for randomness and risk, the study ultimately derives an optimal 



Highlights in Science, Engineering and Technology ACMME 2025 

Volume 132 (2025)  

 

173 

planting scheme over a nearly seven-year period. The findings provide valuable references and 

practical insights for crop planting planning in North China. 

2. Establishment of decision variables and objective functions 

The data in this paper comes from 1,201 acres of cropland in a region of North China in 2023, 

with 34 plots of varying sizes. The data source is from 

https://www.mcm.edu.cn/html_cn/node/a0c1fb5c31d43551f08cd8ad16870444.html 

For the 2023 crop planting and 2023 statistics, this paper correlates the data in the 2023 crop 

planting table and the 2023 statistics and calculates the expected 2023 sales production, total planting 

cost, average selling price, and sales unit price for each crop in each plot. 

2.1. Establishment of decision variables and objective functions 

In this paper, the decision variable is identified as 𝑥𝑖𝑗𝑠
𝑡 , i.e., the acreage of the crop in the 𝑗th of 

the 𝑖-th plot in the 𝑠-th season of the 𝑡-year. 

This rural area contains three types of arable land, which are watered land, ordinary greenhouses, 

and smart greenhouses, and the number of seasons for crop cultivation varies among the different 

types of arable land, so this paper introduces the seasonal parameter 𝑠: 

𝑠 = {

0, Single-season planting
1, First season of two-season planting
2, Second season of two-season planting

                    (1) 

In order to optimize the cropping scheme for the crops in the village from 2024-2030, the total 

return should be maximized for the seven years from 2024-2030. In this paper, the total return is set 

to be 𝑊 and 𝑊 = ∑  𝑡 𝑊𝑡 = ∑  𝑡 (𝑆𝑎𝑙𝑒𝑡 − 𝐶𝑜𝑠𝑡𝑡). When the total production of a crop exceeds the 

expected sales, the excess will be sold at a reduced price of 50% of the 2023 sales price. The formula 

for calculating sales is as follows: 

Sale𝑡 = ∑  𝑗 {
{𝑚𝑖𝑛[(∑  𝑖,𝑠 𝑥𝑖𝑗𝑠

𝑡 ⋅ 𝑁𝑖𝑗𝑠 − ∑  𝑖,𝑠 𝑥𝑖𝑗𝑠
2023 ⋅ 𝑁𝑖𝑗𝑠), 0] + ∑  𝑖,𝑠 𝑥𝑖𝑗𝑠

2023 ⋅ 𝑁𝑖𝑗𝑠} ⋅ 𝑃𝑗

+
1

2
𝑚𝑎𝑥[∑  𝑖,𝑠 𝑥𝑖𝑗𝑠

𝑡 ⋅ 𝑁𝑖𝑗𝑠 − ∑  𝑖,𝑠 𝑥𝑖𝑗𝑠
2023 ⋅ 𝑁𝑖𝑗𝑠),0] ⋅ 𝑃𝑗

}     (2) 

The final objective function is as follows: 

𝑊 = ∑ {∑ {{
{min[(∑ 𝑥𝑖𝑗𝑠

𝑡
𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠 − ∑ 𝑥𝑖𝑗𝑠

2023
𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠), 0] + ∑ ⋅ 𝑁𝑖𝑗𝑠

2023
𝑖𝑗𝑠 } ⋅ 𝑃𝑗

+
1

2
max[(∑ 𝑥𝑖𝑗𝑠

𝑡
𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠 − ∑ 𝑥𝑖𝑗𝑠

2023
𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠), 0] ⋅ 𝑃𝑗 − ∑ (𝑥𝑖𝑗𝑠

𝑡 ⋅ 𝑄𝑖𝑗𝑠
𝑡 )𝑖,𝑠

𝑗 }𝑡 }  (3) 

Based on the climate characteristics, cropland types and crop growth patterns in North China, the 

following constraints are formulated in this paper: 

(1) Crop acreage requirements 

Crops must be planted on a plot that is smaller than the area of the plot and the crop must be planted 

on an area larger than the 0. 

∑  𝑗 𝑥𝑖𝑗𝑠=0𝑜𝑟1𝑜𝑟2
𝑡 ≤ 𝐴𝑖                              (4) 

𝑥𝑖𝑗𝑠
𝑡 ≥ 0                                  (5) 

And too small area planting may lead to insufficient yield per unit area to cover the production 

cost and reduce the overall economic efficiency. Therefore, this paper assumes that the planting area 

of each crop on each plot should not be less than one-tenth of the total area of the plot. 

𝑥𝑖𝑗𝑠
𝑡 ≥

1

10
𝐴𝑖                                  (6) 

(2) Crop rotation requirements 
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In order to maintain soil health, reduce pests and diseases, and improve crop yield and quality, 

agriculture requires that the same plant be grown without successive heavy cropping. Since the first 

and second seasons of ordinary greenhouses in this rural area as well as the single and double cropping 

arrangements in watered land satisfy the requirement of growing the same crop without successive 

re-cropping, this paper makes the following constraints only for smart greenhouses: 

{
𝑥𝑖𝑗𝑠=1

𝑡 × 𝑥𝑖𝑗𝑠=2
𝑡 = 0

𝑥𝑖𝑗𝑠=2
𝑡−1 × 𝑥𝑖𝑗𝑠=1

𝑡 = 0
                              (7) 

(3) Requirements for growing legumes 

Legume crops significantly improve soil health and agricultural sustainability by fixing nitrogen, 

improving soil structure, managing pests and diseases and increasing crop diversity. This paper 

therefore stipulates that all land should be planted with legumes at least once in three years. 

∑  𝑗=𝑏𝑒𝑎𝑛 (𝑥𝑖𝑗𝑠
𝑡−1 + 𝑥𝑖𝑗𝑠

𝑡 + 𝑥𝑖𝑗𝑠
𝑡+1) > 0                       (8) 

(4) Planting concentration requirements 

 

Figure 1. Relationship between the number of crops grown per plot and total returns 

In Figure 1, it can be seen that the total return is maximum when the number of crops is 3, and the 

total return decreases more when the number of crops is 7-9. In order to facilitate farming and field 

management, the planting area of each crop in each season should be concentrated as much as possible, 

and the area planted on a single plot should not be too small, so this paper assumes that the number 

of crops planted on each plot is 3. 

2.2. Solution of Case I model and analysis of results 

In this section, only the ideal case is considered, i.e., it is assumed that the expected sales volume, 

planting cost, acreage, and sales price remain stable, and that crops that exceed the expected sales 

volume are treated as being sold at a 50% price reduction. The model results are shown in Table 1: 

Table 1. Income forecast statement 

Year 2024 2025 2026 2027 2028 2029 2030 

Annual yield 4390416.5 3798047.0 4060116.3 4040712.7 4937509.6 3948592.0 5853151.3 
 

 The total seven-year return for this planting scheme was 310,285,545.4, and the return changes is 

visualized in Figure 2: 
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Figure 2. Diagram of the results of the optimal planting scheme for case 1 

 In Figure 2, the bar charts show the crop cultivation returns for each year from 2024 to 2030, while 

the line graphs show the growth rate of returns for each year of the same period. Based on these data, 

the following conclusions can be drawn: 

(1) As shown in the trend line, there is a slight overall upward trend in crop yields for each year 

from 2024-2030; 

(2) The annual growth rate of returns fluctuates considerably in each of the years 2024-2030, with 

the highest rate approaching 50 percent in 2030. 

3. Solving Crop Planting Uncertainty Problem Based on Sample Average 

Approximation (SAA) 

Sample Average Approximation (SAA) is an optimization technique widely used in mathematical 

optimization and operations research, primarily for solving stochastic optimization problems. It is 

particularly effective in situations where the objective function cannot be calculated precisely but can 

be estimated through stochastic simulation. SAA works by drawing samples from the probability 

distribution of uncertain parameters and using the empirical average of the finite samples to 

approximate the expected value, thereby transforming the stochastic problem into a deterministic one, 

which can be solved using traditional optimization techniques. This method has broad applications in 

fields such as stochastic programming, risk management, and engineering design [4-5]. Thomas Lew 

et al. [6] studied non-convex stochastic programming problems with expected value equality 

constraints and found that the SAA method does not necessarily guarantee asymptotic optimality as 

the sample size increases. To address this, they relaxed the equality constraints and demonstrated that 

under moderate smoothness and boundedness conditions, the modified SAA method could achieve 

asymptotic optimality. Wang Mingzheng et al. [7] proposed an SAA-based method that transforms 

stochastic problems into deterministic constrained optimization problems using a regularized gap 

function and proved the convergence of both the optimal value and the optimal solution. Ren 

Yonghong et al. [8] introduced an SAA method based on the Log-Sigmoid approximation to solve 

chance-constrained optimization problems. They demonstrated that the optimal value and the set of 

optimal solutions for the SAA problem exhibit good convergence properties when the sample size is 

sufficiently large. Given the stochastic, uncertain, and chance-constrained characteristics of the data 

in this study, the sample average approximation method is also employed in this paper. 

The formula for the sample means approximation can be expressed as: 
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𝑓𝑛(𝑥) =
1

𝑛
∑  𝑛

𝑘=1 𝑓(𝑥, 𝜉𝑘)                            (9) 

Where 𝑓𝑛(𝑥) is a sample-based approximation function. 𝜉𝑘 is the 𝑘th sample drawn from the 

distribution of the random variable 𝜉 . With SAA, this paper transforms the original stochastic 

optimization problem into the following deterministic optimization problem: 

𝑚𝑖𝑛
𝑥∈𝐷

 𝑓𝑛(𝑥)                                (10) 

Where 𝐷 is the set of feasible solutions. By solving this deterministic problem, this paper can 

obtain an approximate solution to the original stochastic problem. 

Sampling method is a key component of Sample Average Approximation, and Latin Hypercubic 

Sampling is chosen in this paper. Latin hypercubic sampling improves the accuracy and efficiency of 

the simulation results by dividing the range of values for each dimension into a number of equal-

width intervals and ensuring that only one sample point is taken in each interval [9]. Compared with 

traditional random sampling, it effectively avoids the bias problem and ensures that there are enough 

samples in different regions of the sample space. Due to the smaller sample size compared to 

traditional Monte Carlo methods, it can also greatly save computational resources while considering 

more uncertainties and risks [10]. Xu et al [11] investigated how to utilize the Latin Hypercubic 

Sampling (LHS) method for parametric uncertainty analysis to simulate the uncertainty of a random 

variable and consider the correlation between the variables in order to improve the computational 

accuracy under the condition of small samples and the efficiency. Yan Zhang et al [12] proposed a 

stratified Latin hypercube sampling method, which proved to be advantageous in improving 

estimation accuracy and shrinking Monte Carlo variance. The data in this paper is characterized by 

multi-dimensionality, high optimization difficulty and constraints, so the Latin hypercube related 

method is also used in this paper. 

The basic steps of Latin hypercube sampling are as follows: 

(1) Delineation of intervals: 

Suppose that this paper has an 𝑁-dimensional random variable with a range of values in each 

dimension divided into 𝑀 equal-width intervals. The length of each interval is 
1

M
. 

(2) Generate a sample 

One sample point is randomly selected in each interval of each dimension. Specifically, for the 𝑖-
th dimension(𝑖 = 1,2, … , 𝑁), this paper randomly selects a sample point 𝑃𝑖𝑗  from 𝑗 intervals (𝑗 =

1,2, … , 𝑀), and combines these sample points into a matrix 𝐴. 

𝐴 = [

𝑃11 𝑃12 ⋯ 𝑃1𝑀

𝑃21 𝑃22 ⋯ 𝑃2𝑀

⋮ ⋮ ⋱ ⋮
𝑃𝑁1 𝑃𝑁2 ⋯ 𝑃𝑁𝑀

]                          (11) 

(3) Confuse the order: 

To ensure the randomness of the samples, each row of matrix 𝐴 needs to be randomly disrupted 

to obtain the final sample matrix B. Each column of matrix 𝐵 represents a sample point: 

𝐵 = [

𝑃1𝑥 𝑃1𝑦 ⋯ 𝑃1𝑧

𝑃2𝑜 𝑃2𝑝 ⋯ 𝑃2𝑞

⋮ ⋮ ⋱ ⋮
𝑃𝑁𝑟 𝑃𝑁𝑠 ⋯ 𝑃𝑁𝑡

]                          (12) 

Where 𝑥, 𝑦, 𝑧, 𝑜, 𝑝, 𝑞, 𝑟, 𝑠, 𝑡 are the indexes of the sample points[13-15]. 

Based on the above ideas, the uncertainties faced by the expected sales volume, acreage, planting 

costs and selling prices of various crops in the real situation are combined with the possible risks of 

planting. This paper introduces the following fluctuations based on the ideal situation in the previous 

section: 
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Expected sales 𝑽𝒋
𝒕: For food crops, the average annual growth rate of wheat and corn relative to 

2023 is between 5% and 10%. This article believes that the distribution of annual growth rate 𝑅𝑡𝑗  of 

wheat and corn is a normal distribution 𝑁(7.5%, (1.2%)2). 

𝑉𝑗
2023 = ∑  𝑖,𝑠 𝑥𝑖𝑗𝑠

𝑡=2023 ⋅ 𝑁𝑖𝑗𝑠
𝑡=2023                         (13) 

𝑉𝑗
𝑡 = (1 + 𝑅𝑡𝑗) ⋅ 𝑉𝑗

𝑡−1                            (14) 

Other crops: Since the expected annual sales volume in the future will change by about ±5% 

relative to 2023, this article treats the changes in other crops 𝑅𝑡𝑗  as a normal distribution 

𝑁(0, (3%)2): 

𝑉𝑗
𝑡 = (1 + 𝑅𝑡𝑗) ⋅ 𝑉𝑗

𝑡=2023                           (15) 

Yield per mu 𝑵𝒊𝒋
𝒕 : The yield per mu of crops is significantly affected by natural factors such as 

weather, pests and diseases, and soil conditions. Crops of the same type usually respond similarly to 

these factors because they grow in similar ecological environments. Therefore, this paper uses the 

same change in yield per mu for the same type of crops to describe fluctuations in each season. 

𝑁𝑖𝑗𝑠
𝑡 = (1 + 𝑌𝑡𝑗𝑠)𝑁𝑖𝑗𝑠

𝑡=2023                          (16) 

𝑌𝑡𝑗𝑠~𝑁(0, (4%)2)                             (17) 

Planting cost 𝑪𝒋
𝒕: Due to the influence of market conditions, the planting cost of crops increases by 

about 5% every year on average. Therefore, this article believes that the average growth rate of the 

planting cost of each crop is 𝐸𝑡𝑗~𝑁(5%, (0.5%)2). 

𝐶𝑗
2023 = ∑  𝑖,𝑠 (𝑥𝑖𝑗𝑠

𝑡 ⋅ 𝑄𝑖𝑗𝑠
𝑡 )                          (18) 

𝐶𝑗
𝑡 = (1 + 𝐸𝑡𝑗)𝐶𝑗

𝑡−1                            (19) 

Among them, 𝑄𝑖𝑗𝑠
𝑡  is the cost per acre of the 𝑗 crop in the 𝑖 plot in 𝑡. 

Sales Price 𝑷𝒋
𝒕: 

(1) The sales price of food crops is basically stable. This article believes that when 𝑗is a food crop, 

the sales price change rate 𝐹𝑗
𝑡  obeys the normal distribution 𝑁(0, (0.5%)2): 

𝑃𝑗
𝑡 = (1 + 𝐹𝑗

𝑡)𝑃𝑗
2023                            (20) 

(2) The sales price of vegetable crops has an increasing trend, with an average annual increase of 

about 5%. This article believes that when 𝑗is a vegetable crop, the sales price change rate 𝐹𝑗
𝑡obeys 

the normal distribution 𝑁(5%, (0.5%)2): 

𝑃𝑗
𝑡 = (1 + 𝐹𝑗

𝑡)𝑃𝑗
t-1                            (21) 

(3) The sales price of edible fungi is stable but declining and can decrease by approximately 1%-

5% per year, among which the sales price of morels decreases by 5% per year. This article believes 

that when 𝑗is other edible mushrooms except morels, the sales price change rate 𝐹𝑗
𝑡obeys the normal 

distribution 𝑁(3%, (1%)2); and when 𝑗 is morels, the sales price change rate is 𝐹𝑗
𝑡 = 5%. 

𝑃𝑗
𝑡 = (1 − 𝐹𝑗

𝑡)𝑃𝑗
t-1                            (22) 

Based on case 1 and combined with the above change equation, the objective function is as follows: 
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𝑊 = ∑ {∑ {
{

min[(∑ 𝑥𝑖𝑗𝑠
𝑡

𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠
𝑡 − 𝑉𝑗

𝑡), 0]

+ ∑ 𝑥𝑖𝑗𝑠
2023

𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠
𝑡 } ⋅ 𝑃𝑗

𝑡

+
1

2
max[(∑ 𝑥𝑖𝑗𝑠

𝑡
𝑖,𝑠 ⋅ 𝑁𝑖𝑗𝑠

𝑡 − 𝑉𝑗
𝑡), 0] ⋅ 𝑃𝑗

𝑡 − 𝐶𝑗
𝑡

}𝑗 }𝑡            (23) 

4. Case 2 model results 

 According to the SAA method, this paper approximates the distribution of a random variable by 

generating a large number of samples. In order to better determine the number of samples for the SAA 

method, this paper sets the maximum number of samples to be 10,000, and increases 100 samples per 

iteration to examine the effect of the change in the number of samples N on the SAA method. 

 

Figure 3. Sample Average Approximation convergence analysis 

 It can be seen in Figure 3 that as the sample size increases, the returns for each year converge at 

sample sizes greater than 4000. For each random variable, the paper performs the following steps: 

Use the SAA sampling method to generate 𝑁 samples (𝑁 = 4000)samples of random variables, 

such as sales volume, yield per mu, cost and price. 

The Latin hypercube sampling method was applied to ensure sample homogeneity and 

representativeness. 

Calculate the average of these samples as the final estimate 𝑉̂𝑗
𝑡 =

1

𝑁
∑ 𝑉𝑗,𝑖

𝑡𝑁
𝑖=1 , where 𝑉𝑗,𝑖

𝑡  is the sales 

volume of the 𝑖 sample. Other variables (yield per mu, planting cost, sales price) are estimated in a 

similar way. 

The original problem is transformed into 

𝑚𝑎𝑥
1

𝑁
∑  𝑁

𝑖,𝑗=1 𝑊(𝑥𝑖𝑗𝑠
𝑡 , 𝑉̂𝑗

𝑡, 𝑁̂𝑖𝑗
𝑡 , 𝐶̂𝑗

𝑡 , 𝑃̂𝑗
𝑡)                     (24) 

The result is shown below: 



Highlights in Science, Engineering and Technology ACMME 2025 

Volume 132 (2025)  

 

179 

 

Figure 4. Diagram of the results of the optimal planting scheme for case 2 

 In Figure 4, the total income over seven years is approximately 56,274,801.83 yuan. The columns 

represent annual crop planting income (2024–2030), while the line shows the annual growth rate. Key 

conclusions: 

(1) The annual crop planting income from 2024 to 2030, as shown by the trend line, generally shows 

a fluctuating upward trend. 

(2) There will be certain fluctuations in the annual growth rate of earnings from 2024 to 2030. 

The planting situation of each plot of land in 2024 is shown in Figure 5 and Figure 6. 

 

Figure 5. 3D Crop Planting Scheme (Plot number A1-C6) in 2024 
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Figure 6. 3D Crop Planting Scheme (Plot number D1-F4) in 2024 

Cropland numbers and corresponding types are: A1-A6-plain dry land, B1-B14-terraces, C1-C6-

sloping land, D1-D8-irrigated land, E1-E16-ordinary greenhouses, and F1-F4-smart greenhouses. 

The crop numbers and corresponding crop names are shown in Table 2. 

Table 2. Crop number and corresponding crop name 

ID Crop Name ID Crop Name ID Crop Name ID Crop Name 

1 Soybean 12 Pumpkin 23 Spinach 34 Celery 

2 Black Bean 13 Sweet Potato 24 Green Pepper 35 Chinese Cabbage 

3 Red Bean 14 Oat 25 Cauliflower 36 White Radish 

4 Green Bean 15 Barley 26 Cabbage 37 Red Radish 

5 Pod Bean 16 Rice 27 Oilseed Lettuce 38 Elm Mushroom 

6 Wheat 17 Cowpea 28 Baby Bok Choy 39 Shiitake Mushroom 

7 Corn 18 Sword Bean 29 Cucumber 40 White Pearl Mushroom 

8 Millet 19 Kidney Bean 30 Lettuce 41 Morel Mushroom 

9 Sorghum 20 Potato     

10 Foxtail Millet 21 Tomato     

11 Buckwheat 22 Eggplant     

5. Conclusion 

 This study focuses on the optimization of local resources in the North China region. By employing 

the Sample Average Approximation (SAA) method combined with Latin Hypercube Sampling, it 

analyzes multiple factors influencing crop cultivation and proposes optimized planting strategies 

tailored to local climate and soil conditions. The results indicate that the optimized planting strategies 

can achieve significant economic benefits during the period from 2024 to 2030, with annual average 

profits showing a fluctuating upward trend. The findings demonstrate strong practical value and serve 

as a meaningful reference, providing scientific support for the rural revitalization strategy and 

promoting the sustainable development of agricultural production. 

 Although this study has achieved preliminary results, there are still some limitations, such as 

insufficient sensitivity analysis of market demand changes and constraints in model assumptions. In 

the next steps, the plan is to further improve the model by incorporating more external factors, such as 
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climate change and market fluctuations, to enhance its adaptability and accuracy. Additionally, field 

investigations will be conducted to collect more empirical data to validate and refine the research 

outcomes, ensuring the feasibility and effectiveness of the optimized strategies. This will provide a 

more robust foundation for supporting rural revitalization. 
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