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Abstract. This paper takes the statistics of coal pyrolysis data released by the Chinese Academy of 
Sciences as the research subject and integrates the BP neural network model. It conducts an 
empirical study on the prediction and optimization issues of product yields during the co-pyrolysis 
process of biomass and coal. The research reveals that n-hexane insoluble (INS) have an 
insignificant impact on the yields of tar, water, and char residue. Subsequently, the multi-factor 
analysis of variance (ANOVA) is employed to analyze the disparities between the experimental 
values and the theoretical calculated values. The conclusion drawn is that the tar, water, and char 
residue products exhibit statistically significant differences under certain mixing ratios. Particularly, 
a notable difference exists between the experimental and theoretical values of char residue, 
indicating that the existing model might require adjustment and optimization in predicting the yield of 
char residue. To optimize the yield of co-pyrolysis products, a multivariate regression model is 
established to analyze the influences of different mixing ratios on the yields of tar, water, and char 
residue, and the BP neural network model is utilized to predict the yields of pyrolysis products. This 
showcases the application potential of artificial intelligence in the field of chemical engineering, 
especially in handling complex chemical reaction systems. 

Keywords: BP Neural Network Model, Multi-factor Analysis of Variance Method, Multivariate 
Regression Model, Prediction of Coke Residue Yield, Optimization of Co-pyrolysis Product Yield. 

1. Introduction 

With the rapid advancement of global industrialization, the consumption of traditional fossil 

energy is escalating at a fast pace [1]. This not only gives rise to the rapid exhaustion of resources but 

also triggers severe environmental pollution issues. Confronted with this dual challenge, the search 

for clean and renewable alternative energy sources has emerged as a focus in the global scientific 

research domain. Biomass, being the sole renewable carbon source, has garnered significant attention 

due to its abundant reserves, carbon neutrality, and renewability. Nevertheless, when utilized 

independently, biomass suffers from drawbacks such as low energy density, low calorific value, and 

low thermal efficiency, which constrains its large-scale application. Meanwhile, coal, as a vital 

constituent of the current global energy consumption framework, will continue to play a crucial role 

in the foreseeable future. However, the combustion of coal generates a considerable number of 

pollutants such as carbon dioxide, sulfur dioxide, and nitrogen oxides, exerting a serious impact on 

the environment. Hence, the co-utilization of biomass and coal, particularly through the co-pyrolysis 

technology, has emerged as a highly promising solution. The co-pyrolysis technology can not only 

ameliorate the disadvantages of biomass when used alone but also alleviate, to a certain extent, the 

environmental pollution caused by coal combustion. Through co-pyrolysis, solid, liquid, and gas 

three-phase products can be obtained, and these products possess extensive application prospects [2]. 

Simultaneously, the synergy effect during the co-pyrolysis process is also one of the current research 

hotspots, which holds great significance for enhancing the pyrolysis efficiency and optimizing the 

product distribution [3]. The conclusions drawn from this study are not only of great significance for 

the research and development of pyrolysis technology, but also provide a theoretical basis and 

practical guidance for process optimization and control in industrial applications. By further 

experimental verification and process optimization, it is possible to achieve more efficient energy 

recovery and superior environmental performance in commercial pyrolysis processes. Furthermore, 

by analyzing the effects of different mixing ratios on the yields of tar, water, and slag, valuable 
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insights have been gained on how to adjust these ratios to optimize product yields. Therefore, this 

study has important reference value for related issues in co-pyrolysis of biomass and coal. 

2. Theoretical analysis and research hypotheses 

2.1. The Impact of the Mixing Ratio of n-Hexane Insoluble Matter (INS) and Raw Materials 

Firstly, hexane insoluble matter [4] primarily refers to the solid products remaining subsequent to 

pyrolysis, and its formation is intricately associated with the carbonaceous structure within the raw 

materials, pyrolysis conditions, and the interaction among the raw materials. Biomass and coal exhibit 

marked disparities in chemical composition and structure. Biomass is rich in cellulose, hemicellulose, 

and other components prone to pyrolysis, while coal mainly consists of complex organic 

macromolecules and minerals. Hence, when the two are combined in varying proportions, it will 

directly influence the transformation and reconfiguration of the carbonaceous structure during the 

pyrolysis process [5]. Secondly, alterations in the mixing ratio will modify the concentration of 

hydrogen radicals and other active groups within the pyrolysis reaction system. Biomass releases a 

substantial amount of hydrogen radicals during the pyrolysis process, and these radicals can 

participate in the pyrolysis reaction of coal, facilitating the cleavage and reformation of carbon-

hydrogen bonds in coal [6]. When the proportion of biomass escalates, the supply of hydrogen 

radicals concomitantly increases, which assists in the cracking of more macromolecular structures in 

coal into smaller molecules or fragments, thereby generating more volatile products and reducing the 

formation of hexane insoluble matter. Nevertheless, it is worthy of note that the ash and mineral 

content within biomass might also exert an impact on the formation of hexane insoluble matter. 

Certain mineral components may play a catalytic role during the pyrolysis process, promoting the 

generation of coke or altering its structure. Therefore, when the mixing ratio varies, the catalytic or 

inhibitory effect of minerals in biomass on the pyrolysis behavior of coal also necessitates 

consideration. Additionally, the mixing ratio may also impinge upon the secondary reactions of 

pyrolysis products. During the co-pyrolysis process, the volatile products generated from the initial 

pyrolysis might undergo further reactions (such as gas-phase reforming, polycondensation, etc.) with 

coke, thereby influencing the yield and properties of hexane insoluble matter [7]. A higher proportion 

of biomass may stimulate the generation of more volatile products, thereby augmenting the likelihood 

of these products undergoing secondary reactions with coke and modifying the yield and structure of 

hexane insoluble matter. 

Based on the foregoing: The following hypotheses are proposed in this paper: 

H1: The presence of n-hexane insoluble matter (INS) exerts a certain impact on the product 

distribution in the pyrolysis process, particularly on the yields of tar and water. 

H2: The selection of raw materials and the mixing ratio are the crucial factors for the control of 

pyrolysis efficiency and product quality. 

2.2. The influence of the proportion of biomass 

Firstly, from the perspective of chemical reaction kinetics, the co-pyrolysis of biomass and coal 

constitutes a complex chemical reaction process, encompassing multiple reaction pathways. When 

the two are blended in varying proportions, the interaction between them alters the pyrolysis reaction 

path and rate of the original single material. Nevertheless, as the proportion of biomass increases, the 

ash and minerals it contains may exert catalytic or inhibitory effects on the pyrolysis process, thereby 

influencing the yield of the product. Secondly, from the viewpoint of the interaction mechanism, there 

exists a distinct synergy effect during the co-pyrolysis process of biomass and coal. The hydrogen 

element and alkali metal elements in biomass can facilitate the cleavage of carbon-hydrogen bonds 

in coal, thereby accelerating the pyrolysis process of coal. Concurrently, the minerals and carbon 

skeleton structure in coal may also have certain impacts on the pyrolysis of biomass [8-10]. The 

intensity of this synergy effect depends on the mixing ratio of biomass and coal. Under an appropriate 

mixing ratio, the synergy effect is the most pronounced and can significantly enhance the yield of 
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pyrolysis products. However, when the mixing ratio is excessively high or low, the synergy effect 

may weaken or even vanish, resulting in no notable change in the product yield. Additionally, from 

the perspective of product distribution, different mixing ratios will also affect the types and quantities 

of co-pyrolysis products. A higher proportion of biomass may augment the yields of gas and tar as 

biomass is rich in components prone to pyrolysis. Nevertheless, an overly high proportion of biomass 

may also lead to an increase in the moisture content of the product, thereby reducing the calorific 

value and quality of the pyrolysis product. Hence, when conducting co-pyrolysis experiments, it is 

requisite to select an appropriate mixing ratio to obtain the optimal product yield and quality [11]. 

H3: A high proportion of biomass is beneficial for increasing the tar yield. 

3. Research Design 

3.1. Data Sources and Preprocessing 

The data in this article is derived from the pyrolysis data of coal published by the Chinese Academy 

of Sciences. The following processing was carried out on the initial data in this article: (1) Eliminate 

the samples in the experimental samples whose mass is significantly different from that of other 

samples; (2) Eliminate the samples with missing data; (3) Eliminate the samples with improper results 

due to improper operation and other reasons; (4) Calculate the yield of pyrolysis products of each 

sample. 

3.2. Method Introduction 

Firstly, through data analysis in this paper, the specific influence of the mixing ratio of different 

raw materials on the product yield is studied, the key factors are identified, and the optimization 

direction for the production process is provided. The correlation between the physicochemical 

properties of the raw materials and the product yield is analyzed, and the reaction mechanisms under 

different conditions are evaluated. Subsequently, statistical methods (such as t-test) are adopted to 

assess whether there are significant differences between the experimental values and the theoretical 

calculated values, the possible reasons for the differences, such as experimental errors and the 

limitations of the theoretical model, are analyzed, and suggestions for improving the theoretical model 

are proposed. Finally, based on a large amount of experimental data, a BP neural network model is 

established and trained to learn the complex relationship between the input variables and the product 

yield. The prediction performance and accuracy of the model are analyzed, and its application value 

in the actual production process is evaluated. 

4. Model establishment and solution 

4.1. Analysis of the influence of hexane insoluble matter (INS) on the product yield 

First, the data preprocessing is carried out as follows (Table 1). 

Table 1. Data Preprocessing 

 Date Sample Ratio INS_g Tar_Yield Water_Yield Char_Yield 

0 2013-12-06 Huainan Coal (HN) 100 0.1246 0.0579 0.7599 0.0809 

1 2013-12-06 Huainan Coal (HN) 100 0.4566 0.0579 0.7587 0.0809 

2 2014-03-12 Shenmu Coal (SM) 100 0.0977 0.0914 0.7365 0.0719 

3 2014-03-12 Shenmu Coal (SM) 100 0.1061 0.0914 0.7281 0.0719 

4 2014-01-05 Nei Mongol Lignite (NM) 100 0.4244 0.1671 0.6244 0.0331 

5 2014-01-05 Nei Mongol Lignite (NM) 100 0.0249 0.1671 0.6288 0.0331 

6 2015-10-15 Heishan Coal (HS) 100 0.0839 0.0904 0.7348 0.0749 

7 2015-10-15 Heishan Coal (HS) 100 0.0775 0.0904 0.7353 0.0749 

8 2013-11-23 Cotton Stalk (CS) 100 0.1828 0.2608 0.3139 0.0944 

9 2013-11-23 Cotton Stalk (CS) 100 0.4844 0.2608 0.3140 0.0944 
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Based on Figure 1 of this paper, the following conclusions can be drawn: There exists a moderate 

positive correlation (0.48) between the tar yield (Tar Rate) and n-hexane insoluble matter (INS), 

indicating that as INS increases, the tar yield also tends to rise. There is a slight negative correlation 

(-0.35) between the water yield (Water Rate) and INS, revealing that when INS increases, the water 

yield slightly drops. The correlation between the char residue yield (Char Rate) and INS is relatively 

low (-0.21), suggesting that the impact of INS on the char residue yield is not very significant. 

 

Figure 1. Correlation Analysis Chart 

To explore the influence of hexane insoluble substances (INS) on the pyrolysis yield more deeply, 

this article uses Figure 2 to show the relationships between INS and tar yield, water yield, and char 

residue yield. From Figure 2 that: 1) The relationship between INS and tar yield: There is a moderate 

positive correlation (correlation coefficient is about 0.48). This shows that as INS content increases, 

the tar yield tends to increase. 2) The relationship between INS and water yield: There is a slight 

negative correlation (correlation coefficient is about -0.35). 3) The relationship between INS and char 

residue yield: The correlation is relatively low (correlation coefficient is about -0.21), indicating that 

the direct influence of INS on char residue yield is not significant. Nevertheless, the figure shows that 

at some data points, as INS increases, the char residue yield has a slight downward trend. 

 

Figure 2. The relationship between INS and the yields of tar, water, and coke residue 

Consequently, the presence of n-hexane insoluble matter (INS) exerts a certain impact on the 

product distribution in the pyrolysis process, particularly on the yields of tar and water. Through 

optimizing the INS content in the raw materials, it is feasible to effectively regulate the proportion of 

pyrolysis products, thereby attaining more efficient energy recovery and utilization. Hypothesis H1 

is verified. 

4.2. Analysis of the interaction effect of hexane insoluble matter (INS) and the mixing ratio 

To explore whether there is an interaction effect between hexane insoluble matter (INS) and the 

mixing ratio and analyze its influence on the yield of pyrolysis products, a deeper data analysis is 
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needed in this paper. This can include multi-factor analysis of variance (ANOVA), considering the 

effects of INS content, the mixing ratio and their interaction on different pyrolysis products like tar 

yield, water yield and char residue yield. The interaction effects are reported as follows: Tar yield 

(Tar Rate): The main effect of INS: P value = 1.000, indicating no significant effect on tar yield. The 

main effect of the mixing ratio: P value = 0.0136, indicating a significant effect. The interaction effect 

of INS and the mixing ratio: P value = 0.334, indicating no significant effect. Water yield (Water 

Rate): The main effect of INS: P value = 1.000, indicating no significant effect. The main effect of 

the mixing ratio: P value = 0.00366, indicating a significant effect. The interaction effect of INS and 

the mixing ratio: P value = 0.498, indicating no significant effect. Char residue yield (Char Rate): 

The main effect of INS: P value = 1.000, indicating no significant effect. The main effect of the 

mixing ratio: P value = 0.00448, indicating a significant effect. The interaction effect of INS and the 

mixing ratio: P value = 0.693, indicating no significant effect. In the dataset, both INS and the mixing 

ratio have 6 unique values. Based on this, the marking and color settings of the graph are adjusted 

appropriately, and the interaction diagram is generated in this paper. 

 

Figure 3. Interaction diagram of n-hexane insoluble matter (INS) ABC (From the first row on the 

left to the second row) 

Figure 3 shows: There is a moderate positive correlation (0.48) between n-hexane insoluble matter 

(INS) and tar yield, indicating that a higher INS content boosts tar yield during pyrolysis, possibly 

due to more heavy components and complex organic structures in INS that can transform into tar. 

The strong positive correlation (0.87) between the mixing ratio and tar yield further highlights the 

significant influence of the raw material ratio on the pyrolysis product yield. Adjusting the mixing 

ratio appropriately can increase tar yield significantly, offering a control method for industrial 

applications. There is a very strong negative correlation (-0.86) between water yield and the mixing 

ratio, indicating that an increase in the mixing ratio often leads to a decrease in water yield. This may 

be because a higher proportion of certain raw materials generates less water during pyrolysis. The 

moderate negative correlation (-0.53) between char residue yield and the mixing ratio and the strong 
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negative correlation (-0.75) between char residue yield and tar yield show the influence of raw 

material composition and reaction conditions on the yield of solid residues during pyrolysis. 

Therefore, the following conclusion can be drawn: The selection of raw materials and the mixing 

ratio are key factors for controlling pyrolysis efficiency and product quality. Optimizing these 

parameters can significantly improve the yield and quality of pyrolysis oil and other by-products. 

Hypothesis H2 is verified. 

4.3. Optimal analysis of the co-pyrolysis mixture ratio 

The co-pyrolysis process of biomass and coal, as a sustainable energy recovery technology, 

especially needs precise operating conditions and raw material ratios to maximize energy utilization 

and minimize environmental impacts. In this paper, through constructing a multivariate regression 

model, the aim is to explore and optimize the mixing ratio in the co-pyrolysis process for higher 

product utilization and energy conversion efficiency. 

Table 2. Correlation Examination of N-Hexane Insoluble Matter (INS) (Multiple Linear Regression 

for Coefficients) 

 𝑥1 𝑥2 𝑥3 𝑥4 a b c d e f 

𝑥1 1 0.1672 -0.039 0.2168 -0.0330 0.0346 -0.0295 0.3272 -0.3070 0.2792 

𝑥2 0.1672 1 0.0377 -0.2458 0.1896 -0.2002 0.1665 0.0047 0.0171 -0.0418 

𝑥3 -0.0398 0.0377 1 -0.1437 0.0745 -0.0669 0.0473 -0.1524 0.1472 -0.1412 

𝑥4 0.2168 -0.2458 -0.1437 1 -0.4150 0.3595 -0.2397 -0.1316 0.1242 -0.0902 

aa -0.0330 0.1896 0.0745 -0.4150 1 -0.9967 0.9751 -0.2908 0.2989 -0.3297 

bb 0.0346 -0.2002 -0.0669 0.3595 -0.9967 1 -0.9890 0.3038 -0.3121 0.3410 

cc -0.0295 0.1665 0.0473 -0.2397 0.9751 -0.9890 1 -0.3203 0.3283 -0.3529 

dd 0.3272 0.0047 -0.1524 -0.1316 -0.2908 0.3038 -0.3203 1 -0.9981 0.9915 

ee 0.3070 0.0171 0.1472 0.1242 0.298 -0.3121 0.3283 -0.9981 1 -0.9970 

ff 0.2792 -0.04183 -0.1412 -0.0902 -0.3297 0.3410 -0.3529 0.9915 -0.9970 1 
 

It can be observed from Table 2 that the correlations between each x and the respective coefficients 

are relatively low, and the outcome of the multiple linear analysis would be rather poor. To address 

this issue, a new regression equation needs to be determined based on the mechanism. One significant 

aspect worth noting in this table is that there exists a certain linear relationship among a, b, and c, and 

the same holds true for d, e, and f. Herein, the parameters a, b, c, d, e, and f are variables related to 

the combination x. Let's denote𝑎(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑏(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑐(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑑(𝑥1, 𝑥2, 𝑥3, 𝑥4), 
𝑒(𝑥1, 𝑥2, 𝑥3, 𝑥4), 𝑓(𝑥1, 𝑥2, 𝑥3, 𝑥4). 

Table 3. Correlation test of n-hexane insoluble matter (INS) with 𝛼1and 𝛼2(Regression model 

integrating all variables) 

 𝑥1 𝑥2 𝑥3 𝑥4 𝑇 𝛼1 𝛼2 

𝑥1 1 0.1486 -0.036 0.2003 -0.014 0.0325 -0.186 

𝑥2 0.1486 1 0.0384 -0.2912 -0.039 -0.3266 -0.0920 

𝑥3 -0.0366 0.0384 1 -0.1381 -0.0011 -0.0708 0.0382 

𝑥4 0.20032 -0.2916 -0.1381 1 -0.0021 0.3924 0.3495 

𝑇 -0.0147 -0.0393 -0.0011 -0.0021 1 0.7775 0.7240 

𝛼1 0.0325 -0.3266 -0.0709 0.392399 0.7775 1 0.7316 

𝛼2 -0.1868 -0.0920 0.0383 0.3491 0.7240 0.7316 1 
 

Retain two decimal places (Table 3). Some of the data exhibit a relatively strong correlation and a 

correlation analysis can be carried out. It is advisable to simply represent this linear relationship as 

follows for the time being: 

𝛼1𝑖 = 𝛽1 + 𝛽2𝑥1𝑖 + 𝛽3𝑥3𝑖 + 𝛽4𝑥4𝑖 + 𝛽5𝑇𝑖 + 𝜀𝑖                    (1) 

𝛼2𝑗 = 𝛾1 + 𝛾2𝑥1𝑖 + 𝛾3𝑥3𝑗 + 𝛾4𝑥4𝑗 + 𝛾5𝑇𝑗 + 𝜀𝑗                    (2) 



Highlights in Science, Engineering and Technology ACMME 2025 

Volume 132 (2025)  

 

117 

The objective of regression is to minimize∑ 𝜀𝑖
2

𝑖=1  and ∑ 𝜀𝑗
2

𝑗=1  respectively. Thus, the following 

model is constructed: 

{
𝑚𝑖𝑛∑ 𝜀𝑖𝑖=1

2

𝛼1𝑖 = 𝛽1 + 𝛽2𝑥1𝑖 + 𝛽3𝑥2𝑖 + 𝛽4𝑥3𝑖 + 𝛽5𝑥4𝑖 + 𝛽6𝑇𝑖 + 𝜀𝑖
                (3) 

{
𝑚𝑖𝑛∑ 𝜀𝑗𝑗=1

2

𝛼2𝑗 = 𝛾1 + 𝛾2𝑥1𝑖 + 𝛾3𝑥2𝑗 + 𝛾4𝑥3𝑗 + 𝛾5𝑥4𝑗 + 𝛾6𝑇𝑗 + 𝜀𝑗
                (4) 

The solutions of Formulas (3) and (4) can lead to Table 4: 

Table 4. Linear Regression Results of Formula (3) and (4) 

 𝛼1 𝛼2 

𝛽1𝑜𝑟𝛾1 -81.0438914296219 -54.9392098407296 

𝛽2𝑜𝑟𝛾2 0.127428135520998 -3.17766498661371 

𝛽3𝑜𝑟𝛾3 -8.72122122790579 2.69905263685084 

𝛽4𝑜𝑟𝛾4 -1.51147210922572 4.77751156318683 

𝛽5𝑜𝑟𝛾5 0.107736874774200 0.0855854403467038 

𝛽6𝑜𝑟𝛾6 0.339444075584484 0.187536029875751 

Correlation coefficient 0.7961 0.7278 

Sum of Squares of Residuals 1.1666e+04 5.3647e+03 
 

When the correlation coefficient is greater than 0.7, the result is acceptable. Nevertheless, it is 

noted that the confidence interval of the coefficient at this point contains 0, and certain adjustments 

need to be made to this outcome (Tables 5 and 6). 

Table 5. Confidence intervals of parameters 𝛼1and 𝛼2 

 𝛼1 Parameter 𝛼2 Parameter 

𝛽1𝑜𝑟𝛾1 -98.2836 -63.8041 -66.6300 -43.2483 

𝛽2𝑜𝑟𝛾2 -1.6680 1.9229 -4.3952 -1.9600 

𝛽3𝑜𝑟𝛾3 -12.8492 -4.5931 -0.1003 5.4984 

𝛽4𝑜𝑟𝛾4 -9.8498 6.8269 -0.8770 10.4320 

𝛽5𝑜𝑟𝛾5 0.0765 0.1389 0.0644 0.1067 

𝛽6𝑜𝑟𝛾6 0.3005 0.3785 0.1611 0.2139 
 

Table 6. Values of the parameters 𝛼1and 𝛼2after adjustment 

 𝛼1 𝛼2 

𝛽1𝑜𝑟𝛾1 -41.9096161648839 -20.5306533996748 

𝛽2𝑜𝑟𝛾2 12.7543829180532 -3.23987245553597 

𝛽3𝑜𝑟𝛾3 0.108626957388203 2.89296212257521 

𝛽4𝑜𝑟𝛾4 0.000523199399310967 0.0861854351885269 

𝛽5𝑜𝑟𝛾5 -8.51951956130856 0.000287505863408505 

Correlation coefficient 0.8108 0.7381 

Sum of Squares of Residuals 1.0824e+04 5.1625e+03 
 

Table 7. Confidence intervals of adjusted parameters 𝛼1`and𝛼2 

Confidence interval 𝛼1 Parameter 𝛼2 Parameter 

𝛽1𝑜𝑟𝛾1 -52.79629 -31.022 -27.1259 -13.9359 

𝛽2𝑜𝑟𝛾2 2.4720 23.036 -4.4283 -2.0514 

𝛽3𝑜𝑟𝛾3 0.0796 0.1375 0.1599 5.6259 

𝛽4𝑜𝑟𝛾4 0.00046 0.00057 0.0656 0.1066 

𝛽5𝑜𝑟𝛾5 -12.3794 -4.6595 0.0002 0.0003 
 

The adjusted model: 
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{
𝑚𝑖𝑛∑ 𝜀𝑖𝑖=1

2

𝛼1𝑖 = 𝛽1 + 𝛽2𝑥3𝑖 + 𝛽3𝑥4𝑖 + 𝛽4𝑇𝑖
2 + 𝛽5

𝑥2𝑖

𝑥3𝑖
+ 𝜀𝑖

                  (5) 

{
𝑚𝑖𝑛∑ 𝜀𝑗𝑗=1

2

𝛼2𝑗 = 𝛾1 + 𝛾2𝑥1𝑗 + 𝛾3𝑥2𝑗 + 𝛾4𝑥3𝑗𝑥4𝑗 + 𝛾5𝑇𝑗
2 + 𝜀𝑗

               (6) 

 

Table 8. Comparison of the Model Before and After Adjustment 

Regression equation Correlation coefficient Sum of Squares of Residuals Parameter confidence interval 

(3) 0.7961 1.0824e+04 Containing 0 

(4) 0.8108 1.0641e+04 Not Containing 0 

(5) 0.7278 5.3647e+03 Containing 0 

(6) 0.7381 5.1625e+03 Not Containing 0 
 

It can be discerned from Table 7 that the confidence interval excludes zero, and the result is more 

credible. As can be observed from Table 8, the adjusted regression equation features a larger 

correlation coefficient, a smaller residual sum of squares, and the confidence interval does not 

incorporate zero. It outperforms the original regression equation in all respects. In conclusion, the 

following relationship is established: 

𝛼1 = −41.909616 + 12.75438𝑥3 + 0.108627𝑥4 + 0.00052319939932𝑇2 − 8.519519
𝑥2

𝑥3
+ 𝜀   (7) 

𝛼2 = −20.530653 − 3.239872𝑥1 + 2.892962𝑥2 + 0.086185𝑥3𝑥4 + 0.0002875058634𝑇2 + 𝜀   (8) 

The square of the temperatures of the two was performed. The consideration was that the variation 

of the chemical process with temperature is often not linear but a nonlinear one with a more rapid 

increase in influence. It has also been known from the above conclusion that the impact of temperature 

on this type of reaction conforms to a quadratic function relationship. 

 

Figure 4. Graph of the Relationship between the Mixing Ratio and the Tar Yield (Left) and Graph 

of the Relationship between Hexane Insoluble and Tar Yield (Right) 

Through Figures 4, the relationship between the mixing ratio, n-hexane insoluble matter (INS), 

and tar yield and their performance in the regression model can be seen more clearly: With the 

increase of the biomass ratio, the tar yield increases slightly. The regression line shows this trend 

clearly. The graph of the relationship between INS and tar yield: There is a more significant positive 

correlation between INS content and tar yield. This indicates that the increase in INS significantly 

affects the increase in tar yield. The regression line highlights the strong positive relationship. 
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Therefore, the following conclusions can be drawn: (1) Increasing the biomass ratio is beneficial for 

increasing the tar yield. However, the effect of the increase in the mixing ratio on the increase in tar 

yield is relatively mild. The balance between economic benefits and production efficiency needs to 

be considered in practical operations. (2) Raw materials with higher INS may contain more 

components that are difficult to convert, which may be converted into more useful products like tar 

during the pyrolysis process. Hypothesis H3 is proved. 

4.4. Statistical Analysis of the Discrepancies between Experimental Values and Theoretical 

Calculated Values 

To analyze whether there are significant differences between the experimental values and 

theoretical calculated values of the product yields of various co-pyrolysis combinations provided in 

the attachment and identify at which mixing ratios these differences are the most significant, the 

following steps are needed in this paper: Firstly, organize the data in the table, including the 

experimental and theoretical calculated values, for analysis. Next, the t-test statistical method will be 

used to compare the differences. These tests can help determine if the differences are statistically 

significant. For the combinations showing significant differences, the data at different mixing ratios 

will be further analyzed to identify specifically at which ratios the differences are the most significant. 

For each product (tar, HEX, water, and coke residue), this article will undertake a paired sample 

t-test to compare the experimental values with the theoretical calculated values. The t-test results for 

each product are calculated as presented in Table 9: 

Table 9. T-Test Results for Each Product 

Mix_Ratio Exp_Tar Calc_Tar Exp_HEX Calc_HEX Exp_Water Calc_Water Exp_Char Calc_Char  

2 5/100 17.46 15.97 12.58 11.34 5.39 6.17 67.01 68.79 

3 10/100 16.82 16.17 13.02 11.27 7.44 7.37 65.06 66.99 

4 20/100 15.54 16.51 11.16 11.22 10.01 9.39 61.66 63.84 

5 30/100 16.33 16.78 11.67 11.17 10.60 11.03 60.55 61.18 

6 50/100 16.56 17.21 11.48 11.10 14.06 13.76 53.46 56.92 
 

The following are the paired sample t-test results for different products: Tar: T statistic: 0.0305, P 

value: 0.9771. Results show no significant difference between experimental and theoretical values of 

tar. n-Hexane Soluble (HEX): T statistic: 2.3545, P value: 0.0781. Indicates marginal significance, 

suggesting a possible difference. Water: T statistic: -0.1751, P value: 0.8695. Results show no 

significant difference for water. Chart: T statistic: -4.4116, P value: 0.0116. Results show a significant 

difference for char. Conclusions: No significant differences in yields of tar and water. Deficiency in 

predicting char yield. Explore assumptions or other factors. n-Hexane Soluble (HEX) is close to 

significance. Further data needed. Similar experimental and calculated values under most mixing 

ratios. Especially in the 5%-50% range, the closeness is high, indicating strong applicability. 

4.5. Analysis of predicting the yield of pyrolysis products by BP neural network model 

In the field of pyrolysis technology, accurately predicting the yield of pyrolysis products is crucial 

for optimizing the production process, enhancing energy efficiency, and reducing environmental 

impacts. Especially in the co-pyrolysis of biomass and coal, different raw material mixing ratios, 

temperatures, and other reaction conditions complexly affect the final product distribution. 

Traditional physical and chemical models, though providing reliable predictions in some cases, often 

require detailed reaction mechanisms and complex parameter adjustments. Meanwhile, artificial 

intelligence technologies, especially BP (Back Propagation) neural networks, have become powerful 

tools for such problems due to their excellent nonlinear mapping ability and adaptability. The BP 

neural network can establish a prediction model by learning the complex relationship between inputs 

(like raw material ratios, temperatures, etc.) and outputs (such as the yields of tar, water, gas, and char 

slag). This model doesn't need to pre-define the specific chemical mechanism of the reaction but 
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automatically recognizes these relationships through training data, making the BP neural network 

highly suitable for handling prediction tasks in the optimization of chemical processes. 

The neural network model can be specifically categorized into the following four steps: Step 1: 

(Generally, the larger the number of nodes in the hidden layer, the better the fitting effect); Step 2: 

Utilize the processed data to train the network, as detailed below: A. Establish the model and conduct 

training using the trainlm function; B. Specify the learning rate as 0.065; C. Set the maximum training 

epochs to 5000; D. Define the standard error as 0.025; E. Initiate the training of the network. Step 3: 

Employ the trained BP network to simulate the original data; Step 4: Conduct a comparison and test 

between the simulation results and the original data. If the error is less than 0.025, the training 

concludes. Based on the aforementioned steps, the following results are obtained by programming 

through the neural network toolbox: 

  

Figure 5. Schematic Illustration of Error Decline (Left)and Error Analysis Chart (Right) 

It can be known from Figure 5(Left) that after 200 iterations, the mean square error has been less 

than 0.025. Therefore, the training is over and the neural network training is completed. In order to 

more intuitively reflect the effect of the network, the relative error graph is made in this paper, as 

shown in Figure 5(Left). It can be discerned from Figure 5(Right) that the relative error primarily 

fluctuates around 0, with only a few relatively large errors. Consequently, the trained neural network 

can effectively evaluate the model performance. In this research, the BP neural network model was 

employed to predict the yield of co-pyrolysis products of biomass and coal. Through the training of 

a considerable amount of experimental data, the model successfully acquired the complex nonlinear 

correlations among the raw material ratio, reaction conditions, and product yield. The prediction 

outcomes indicate that the model is capable of providing precise and reliable yield predictions under 

a broad range of operating conditions, and the error rate is conspicuously lower than that of traditional 

prediction approaches. 

5. Conclusion 

The existence of n-hexane insoluble matter (INS) exerts a certain impact on the product 

distribution during the pyrolysis process, particularly on the yields of tar and water. Through 

optimizing the INS content in the raw materials, it is feasible to effectively adjust the proportion of 

pyrolysis products, thereby attaining more efficient energy recovery and utilization. Raw materials 

with higher INS might contain more components that are difficult to transform, which could be 

converted into more useful products like tar during the pyrolysis process. Specifically, there is no 

significant disparity between the experimental values and the theoretical calculated values for the 

yields of tar and water. Under the majority of mixing ratios, the experimental values are close to the 

calculated values, demonstrating the excellent predictive capability of the calculation model for the 

actual pyrolysis reaction. Especially within the range of 5% to 50% of the mixing ratio, the proximity 
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between the experimental values and the calculated values is relatively high. Meanwhile, as the 

proportion of biomass rises, the tar yield also increases, but the increment is relatively moderate. 
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