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Abstract. Predicting and optimizing extrusion molding process parameters is a significant and 
challenging research topic in the field of manufacturing, but machine learning-based approaches 
remain relatively scarce. In this study, orthogonal experiments were designed to simulate the 
extrusion process using Simu fact Forming software. The thinning rate, stamping speed, and friction 
coefficient were used as independent variables. Subsequently, prediction models for extrusion force 
and equivalent force were established based on a Radial Basis Function (RBF) neural network. The 
data obtained from the simulation software were used as the training set, and additional experiments 
outside the training set were designed for validation. The model achieved a relative error below 6%, 
demonstrating its reliability. This study not only proposes a novel method for predicting process 
parameters in steel pipe extrusion but also holds significant value for optimizing these parameters 
and improving product quality. The application of this model can benefit various manufacturing 
sectors, including automotive, aerospace, and construction, where precise control of extrusion 
parameters is critical for enhancing product performance and reducing material waste. 
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1. Introduction 

Extrusion molding is a plasticity process primarily used for metal forming. It offers several 

advantages, including high productivity, precise dimensional control, and flexibility, allowing the 

production of parts with complex cross-sections while improving the mechanical properties and 

surface quality of materials. Due to these benefits, extrusion molding is widely used in fields such as 

biomedical materials [1], automotive manufacturing [2-3], construction, aerospace, and aviation. 

The quality of extruded products is strongly correlated with the process parameters used during the 

forming process. Traditional methods of parameter determination require numerous experiments, often 

leading to low accuracy and making process control challenging. Surrogate models, which are based 

on design of experiments (DOE) and statistical analysis, provide an alternative method for addressing 

these challenges. Common surrogate models include Radial Basis Function (RBF) networks, Kriging, 

response surface methodology, and Artificial Neural Networks (ANN) [4]. For example, Kallakunta 

et al. [5] used response surface methodology in hot-melt extrusion (HME) technology to optimize the 

formulation and processing of a solid self-emulsifying drug delivery system. Mamidi et al. [6] applied 

differential scanning calorimetry and response surface methodology to optimize the HME process with 

a focus on material savings. Additionally, Angshuman et al. [7] utilized Artificial Neural Networks 

(ANN) to predict systematic experimental design data, aiding in the development of response surface 

models. These studies offer new methods for optimizing extrusion process parameters, reducing costs 

and resource consumption. 

To address the limitations of traditional process parameter formulation, this paper utilizes 

experimental design and simulations conducted with Simu fact Forming software. A prediction model 

for extrusion stress and equivalent force, based on an RBF neural network, is proposed. The model 

achieves a relative error of below 6% between the predicted and simulated values, enabling fast and 

accurate prediction of extrusion molding process parameters. 
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1.1. Workpiece processability analysis 

C15_c steel pipe was selected as the subject of this study. The pipe has an outer diameter of 58.26 

mm, an inner diameter of 47.24 mm, and a height of 54.6 mm, with inner bottom corners rounded to 

a radius of 2 mm. For the model, the Ring Mash grid generator was used to generate a hexahedral 

mesh, with the maximum refinement degree set to 5. The 3D geometry and mesh division are shown 

in Figure 1. During processing, the extrusion pressure and equivalent force significantly affect the 

quality of the final products. Therefore, it is essential to determine appropriate extrusion pressure and 

equivalent force to ensure product quality. The extrusion process was carried out using hydraulic press 

equipment under a uniform speed extrusion mode. 

 

Figure 1. (a) Gross three-dimensional drawing, (b) Rough grid diagram. 

1.2. Orthogonal experiment 

Orthogonal experimental design is a method used to study multi-factor, multi-level experiments. 

The key is to determine the experimental factors and levels based on the process and the characteristics 

of the workpiece being processed. In this study, based on the characteristics of Simufact Forming 

software and practical experience, thinning rate, stamping speed, and friction coefficient were selected 

as the three factors for the orthogonal experiments. Extrusion pressure and equivalent force are known 

to be important indices for evaluating the quality of the extrusion molding process. 

Based on practical experience, the workpiece temperature and ambient temperature were both set 

to 25°C (room temperature). The extrusion equipment used was a hydraulic press, and the material of 

the workpiece was set to C15_c, with other parameters set to their default values. Three levels were 

selected for each process parameter, and a single-factor test scheme was employed for the experiment. 

The experimental results are shown in Table 1. 

Table 1. Single factor test scheme and results 

Experiment 

No. 

Thinning rate 

/% 

Punching speed 

/mm•s-1 

Coefficient of friction 

/N•m-2 

Equivalent force 

/MPa 

Extrusion 

Forcee 

/KN 

1 0.2 5 0.2 685.12 145.032 

2 0.3 5 0.2 804.11 205.81 

3 0.4 5 0.2 831.97 256.347 

4 0.3 3 0.2 768.48 206.579 

5 0.3 8 0.2 793.1 210.775 

6 0.3 5 0.1 766.2 195.059 

7 0.3 5 0.3 792.13 223.62 
 

In this paper, data is predicted using an RBF neural network model. First, the data is normalized 

using the following formula: 
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𝑋𝑖 =
𝑋𝑖−𝑚𝑖𝑛(X)

𝑚𝑎𝑥(X)−min(X)
                            (1) 

Where X is the matrix containing all elements, 

The experimental data was collected from orthogonal experiments, where each variable was tested 

at specific levels. The values in the table were normalized using equation (1): 

Table 2. Normalized Dataset 

Experiment 

No. 

Thinning rate 

/% 

Punching speed 

/mm•s-1 

Coefficient of friction 

/N•m-2 

Equivalent force 

/MPa 

Extrusion Force 

/KN 

1 0.0 0.4 0.5 685.12 145.032 

2 0.5 0.4 0.5 804.11 205.81 

3 1.0 0.4 0.5 831.97 256.347 

4 0.5 0.0 0.5 768.48 206.579 

5 0.5 1.0 0.5 793.10 210.775 

6 0.5 0.4 0.0 766.20 195.059 

7 0.5 0.4 1.0 792.13 223.62 
 

This transformation scales the data to a range of [0, 1], allowing for better convergence and 

performance of the RBF neural network. 

1.3. Predictive modelling 

The RBF neural network is a type of feed-forward neural network with local approximation 

capabilities, known for its excellent nonlinear fitting and generalization abilities. Proposed by Moody 

and Darken [8], it offers superior learning speed and approximation capabilities compared to other 

neural networks and has been successfully applied in areas such as recognition and evaluation [9]. 

 

Figure 2. Diagram of the structure of the RBF neural network 

As shown in Fig. 2, the structure of the RBF neural network is composed of the input, hidden, and 

output layers [10]. The input layer receives the preprocessed data and passes it to the hidden layer. 

The hidden layer performs nonlinear mapping from the input data space to the hidden layer space, 

transforming the nonlinear inseparable problem in the low-dimensional space into a nearly linearly 

separable problem in a higher-dimensional space. Finally, the output layer calculates the network’s 

output by weighting the hidden layer’s outputs. 

The radial basis function is defined as the distance from a point x in the coordinate space to the 

center ccc. Let the input data vector be 𝒙 = [𝑥1,𝑥2,⋯,𝑥𝑚]𝑇, , where m is the dimension of the input 

data, I is the number of neurons in the hidden layer, and J is the number of network outputs. In this 

paper, a Gaussian function is used as the kernel function for the RBF neurons, and the network output 

can be expressed as: 
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          (2) 

Where: yj is the j-th output value of the output layer, where j=1, 2, 3,...,J, ωij is the connection 

weight of the i-th hidden layer neuron corresponding to the j-th output, i=1,2,...,I; β is the bias value; 

φ() is the Gaussian function operator of the form. 

                        (3) 

Where 𝑖𝑐,𝑖𝛿 are the centre vector and width of the ith neuron, respectively. 

1.4. Training algorithms for neural networks 

The training task of the RBF neural network mainly includes two aspects: the first aspect is 

determining the number of neurons I i in the hidden layer, and the second aspect is determining the 

center vector 𝑖𝑐, width 𝑖𝛿, connection weights 𝜔𝑖𝑗 and bias β. This study employs a grid search 

algorithm to identify the optimal parameters. The optimal parameters obtained are as follows: 

Table 3. Optimal parameters of the neural network algorithm 

Norm Expansion speed Maximum number Display Interval Target performance 

Squeeze /N 1.825 10 1 200 

Equivalent 

force /KPa 
0.980 10 1 200 

 

The RBF neural network excels at handling nonlinear relationships, and there are often complex 

nonlinear connections between extrusion force, equivalent force, and process parameters. With an 

appropriate number of nodes (10 hidden layer nodes), spread rate (10), and norms (1.825 and 0.980), 

the RBF network can effectively learn these nonlinear relationships, thereby enhancing the model's 

predictive capabilities,by setting the target performance to 200, overfitting was effectively prevented. 

2. Results and discussion 

In summary, based on the experimental results from orthogonal experiments, the thinning rate, 

stamping speed, and friction factor are selected as the sequence of factors related to the system. The 

equivalent force of the processed workpiece and the squeezing force are considered as the system 

outputs and incorporated into the RBF neural network. Five sets of experimental data outside the 

training set are used as the validation set. The results obtained after training are as follows: 

Table 4. Validation Set Data Table 

Experiment 

No. 

Thinning rate 

/% 

Punching speed 

/mm•s-1 

Coefficient of friction 

/N•m-2 

Equivalent force 

/MPa 

Extrusion Force 

/KN 

1 0.0 0.0 0.0 670.61 134.801 

2 0.5 0.0 1.0 782.38 221.157 

3 1.0 0.0 0.5 796.86 255.797 

4 1.0 0.5 1.0 815.49 272.555 

5 1.0 1.0 0.0 817.68 243.683 
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(a) Extrusion Force                        (b) Equivalent force 

Figure 3. Comparison of model predictions with true values 

The trends of the predicted and actual values of the equivalent force are similar, and the squeezing 

force matches well with the predicted and actual values. The predicted residuals for the fourth and fifth 

groups of equivalent force gradually increase, while the predicted values for the third group are more 

accurate. The visualized images of the predicted residuals and relative errors are then presented: 

  
(a) Absolute error                      (b) Relative error 

Figure 4. Prediction results of equivalent stress 

For the predictions of equivalent forces, the third group has the highest relative residuals, but the 

relative errors are all less than 5%, indicating that the model performs well on unseen data. 

 
(a) Absolute error                      (b) Relative error 

Figure 5. Predicted results of extrusion force 
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For the prediction results of extrusion force, the relative errors for the first group are larger and 

exhibit an overall downward trend, with all relative errors being less than 6%, indicating that the model 

performs well on unseen data. 

3. Conclusion 

In this study, we developed a quality prediction model for steel pipe extrusion based on a Radial 

Basis Function (RBF) neural network, focusing on two critical process parameters: extrusion force and 

equivalent force. Through simulation experiments and orthogonal tests, we successfully trained the 

model and demonstrated its ability to predict process outcomes with high accuracy. The model 

achieved relative errors below 6% when tested on unseen data, validating its reliability and 

generalization capacity. 

This RBF neural network model provides a novel and effective method for predicting extrusion 

molding process parameters, which is crucial for optimizing production processes. Its application can 

significantly improve the quality control of steel pipe extrusion, reduce the need for extensive 

experimental trials, and enhance overall production efficiency. Moreover, the model's approach can 

be extended to other manufacturing sectors where precise control of extrusion parameters is essential, 

such as in the automotive, aerospace, and construction industries. 

Future work will focus on expanding the model's applicability to more complex extrusion processes 

and exploring its potential integration with real-time production monitoring systems. 
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