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Abstract. The purpose of this paper is to construct and analyze a model for collision detection and 
velocity regulation in curved architectures based on multiple search algorithms using curve function 
and differential equation models. The study first calculates the arc length by curve equations and 
first-class curve integrals to determine the position and velocity of the curve architecture per second. 
Based on this, the differential equations of the polar angles of each part of the curved architecture 
are modeled with respect to time, and the approximate solutions are obtained using the Runge-Kutta 
method. Then, algebraic and geometric knowledge is applied to construct the position equations. In 
addition, this paper defines the collision conditions and constructs a collision detection model by an 
iterative method to finally derive the termination time. Finally, the relationship between the inverse 
curvature distance and the Euclidean distance between the parts of the curve architecture is 
demonstrated for the speed control aspect, and the multiple search algorithm is used to perform an 
accurate search and derive the minimum curvature distance corresponding to the maximum 
Euclidean distance. The results of this paper provide an effective optimization scheme for curved 
architectures, which is especially important in areas such as machine motion planning. 

Keywords: Curve architectures, Runge-Kutta method, differential equations, multiple search 
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1. Introduction 

In this paper, the Runge-Kutta method [1] and differential equations [2] are comprehensively 

applied, while multiple search algorithms [3] are used to analyze the motion state of the curved 

architecture [4], and the dynamic characteristics of the curved architecture during the spiral process 

are deeply investigated. Firstly, the motion trajectory of the curve architecture in the specified time 

is calculated by setting the initial conditions. Secondly, focusing on detecting the interactions between 

the sections, the termination moment of the curve disking in was determined and the final position 

and velocity were recorded. Finally, the optimization of the minimum curvature pitch in the 

turnaround space [5] was explored to ensure that the head of the curve architecture can enter the 

turnaround region smoothly. This study not only provides a new perspective for the dynamic analysis 

of curved architectures, but also provides a useful reference for algorithmic applications in the field 

of machine motion [6]. 

2. Curve Architecture Position and Velocity Analysis 

The goal of this section is to calculate the position and velocity of the entire curved architecture 

per second. The parameters of the section are known, and the curve architecture coils clockwise along 

an equally spaced curve with a curvature of 55 cm, with the center of each handle evenly spaced 

across the curve. In cases where the analytical velocity solution is difficult to obtain, numerical 

differentiation methods can be used, such as difference quotient type numerical differentiation 

formulas versus interpolation type numerical differentiation formulas. It should be noted that the 

velocity is a vector quantity, which requires not only the magnitude of the velocity of the curve 

architecture at each moment, but also the direction of its velocity at some moments. 
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2.1. Curve Architecture Modeling 

The polar coordinate equations of an isometric curve are expressed as follows: 

                                         (1) 

 is the polar diameter in polar coordinates,  is the polar angle, and  are all parameters. 

Suppose the initial angle of the curve at the origin is 0. Then  .By the special property of 

isometric curves, for any two polar angles , when these two polar angles satisfy the following 

relationship: 

                                        (2) 

Their corresponding polar angles are satisfied: 

                                         (3) 

Where  is the curvilinear distance. The associative formula is obtained: 

                                           (4) 

Further, the equidistant curve equation is obtained as: 

                                          (5) 

Transform each point  on the curve into coordinates under the Cartesian coordinate system 

. 

                                        (6) 

Assume that initially, the center of the front handle of the head of the curve architecture is at point 

A. Let the front handle of the head of the curved structure be the first handle, and then  

handle. Let the position of the rd handle be  , and the polar angle of the rd handle be  , 

then the polar angle of the center of the front handle of the head of the curved architecture  , and 

the polar angle of the front handle of the head of the curved architecture at the initial moment is  . 

Known. Let the action distance of the front handle of the head of the curved architecture be  , the 

action time be  , and the action speed be . Then: 

                                         (7) 

On the other hand, by integrating the curves of the first type, one obtains. 

                  (8) 

The travel speed of the front handle of the curved architecture head is always 1 m/s, so the action 

speed of the front handle of the curved architecture head is numerically equal to 1. Hence the equation 

is obtained: 

                  (9) 

The equation is derived from  on both sides at the same time, and then the reciprocal is taken 

on both sides at the same time, and it is noted that  varies from  downwards, so that we get: 

                (10) 
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It is possible to obtain  from Eq. Obviously, at the initial moment,  . This 

gives the position of the head of the curve architecture per second: 

                                   (11) 

Let the magnitude of the velocity of the nd handle be  , and its components along the -

axis direction be  , respectively, and the derivation of Eq. with respect to time  yields the 

magnitude of the velocity of the handle in front of the head of the curved architecture as: 

                                  (12) 

From this paper, it is easy to know that the distance between the centers of the first two handles 

and the centers of the remaining handles are constant, let the distance between the center of the nd 

handle and the center of the rd handle is , it is easy to know that. 

                                   (13) 

So let , then the position of the th handle can be calculated by the 

following equation. 

                       (14) 

This gives the position of the nd handle as . Similarly, its derivative with 

respect to time  yields the velocity of the th handle as. 

                               (15) 

Finally, the mathematical model for this section is developed: 
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                   (16) 

2.2. Solving for Position and Velocity 

For the model that has been developed in this section, it is first necessary to solve the first order 

ordinary differential equation. 

                             (17) 

Considering that the differential equations cannot be solved analytically, it is decided in this paper 

to approximate them numerically with the help of the Runge-Kutta method. The fourth order Runge-

Kutta method is chosen to solve the numerical solution of this differential equation. The fourth-order 

standard Runge-Kutta method, as a high-precision single-step explicit method, has a simple 

computational procedure and can meet the accuracy requirements. In this section, the fourth-order 

standard Runge-Kutta formulation is as follows: 

                        (18) 

Where  is the step size and the local truncation error is  . 

The next step in solving numerical differentiation involves approximating the derivative value of 

a function at a node using the function value at the discrete node. The three-point formula is an 

ingenious method used to solve numerical differentiation by interpolating at specific points to 

approximate the derivative. In this section, for a given function value  on three 

nodes  , there are: 
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                     (19) 

The known parameters provided in the text:  are substituted 

into the formula and the Runge-Kutta method is applied to solve the differential equations involved 

in the formula. Also, the three-point formula in the interpolated numerical differential equation is 

utilized to perform the numerical differential approximation involved in Eq. 

The positions and velocities of the front handle of the head of the curve architecture, the front 

handle of the 1st, 51st, 101st, 151st, and 201st sections of the body behind the head of the curve 

architecture, and the rear handle of the tail of the curve architecture are solved for 0s, 60s, 120s, 180s, 

240s, and 300s, and from the results, it can be seen that the positions and velocities of the different 

sections change as the movement of the curve architecture proceeds. For example, the position of the 

head of the curve architecture along the x-axis and y-axis changes considerably at different points in 

time, while the velocity remains relatively constant. From the head of the curved architecture to the 

tail of the curved architecture, the velocity value of each node shows a gradual decrease, which may 

be due to the attenuation phenomenon in the process of energy transfer during the action of the curved 

architecture. 

 

Fig. 1 Motion trajectory of the handle in front of the head of the curved architecture 

Fig. 1 presents the trajectory of the handle in front of the head of the curved architecture, which 

contains two curves: one is the blue dashed line, and the other is the red solid line. The blue dashed 

line represents the disk-in curve, while the red solid line represents the trajectory of the handle in 

front of the head of the curved architecture. In the trajectory of the curved head handle, the distance 

between any two neighboring positions is nearly the same, which is due to the constant velocity of 

the curved head handle. 

3. Collision Detection Analysis 

This section extends the simulation of the curve architecture motion path based on the previous 

section until the simulation is terminated when a collision occurs. The first task is to construct a 

collision detection model, which does abstraction of the knots and defines knots collision as 

intersections on the plane. The collision detection model is built by detecting whether the knots 

intersect in the plane or not. Over time, until the collision occurs, the collision moment and its 

neighboring time (excluding future moments) are considered as the termination point, and the 

previous model is used to calculate the position and velocity of the curve architecture. 
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3.1. Collision Modeling 

The entire curve architecture is carefully analyzed, and the collision event must first affect the 

head of the curve architecture. In the isometric curve scenario, the space in which the head of the 

curve moves toward the origin is narrower, and the probability of collision increases accordingly. In 

fact, the probability of collision is higher for the head of the curve than for the other sections. 

Therefore, it is reasonable to perform collision detection only on the head of the curved architecture 

to determine the termination moment. Abstracting the knots as thickness-free rectangles, a sufficient 

condition for two knots to collide is that their rectangular regions overlap. Note that rectangle overlap 

is equivalent to one rectangle vertex being inside the other rectangle. Therefore, it is only necessary 

to check whether any vertex of the section at the head of the curve architecture is inside the rectangular 

region of the other section (except for the first section body). If the vertex is inside the section, it is 

determined to be a collision; otherwise, there is no collision. 

 

Fig. 2 Points inside and outside the rectangle 

As shown in Fig. 2, rectangle , point  is inside the rectangle and point  is outside 

the rectangle. Let for any point  connected with the four vertices of the rectangle, respectively, 

from four triangles: , the corresponding areas are denoted as: 

 . Then, from Fig. 2, it follows that: 

                             (20) 

Analytically, when a vertex of the head of the curve architecture satisfies the formula inside the 

rectangular area (e.g., in Fig. 2, the position of point ), the sections collide; otherwise (e.g., in Fig. 

2, the position of point ), no collision occurs. 

Let the head of the curve architecture be section 1, followed by section ,  which 

is the th area of the th vertex of the head of the curve architecture with respect to the th section, 

and the length of the th section is  and the width . Thus, the collision condition is: 

                      (21) 

However, there is a rounding error, so it is corrected to a collision detection model: 

                      (22) 
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3.2. Collision Model Solution 

Using the Helen's formula and solving first with a time step of 1s, the result of 414s is obtained, 

which means that the curve architecture has a collision time in interval . To obtain a more 

accurate result, searching with 413s as the starting point and a step size of 0.01s, the following result 

is obtained as in Fig. 3. 

 

Fig. 3 The collision moment and the motion trajectory of the curve architecture 

It is stated that the collision time of the curve architecture occurs at 413.03s, so the termination 

moment can be 413.02s. In other words, no collision occurs between the nodes (i.e., the curve 

architecture cannot continue to be coiled in) at 𝑡 = 413.02𝑠. 

Finally, with t=413.02s known, the position and velocity of the curve architecture at this point are 

solved using Eq. Partial results are shown in table 1. 

Table 1. Partial results of the position and velocity of the curve architecture now of termination 

Structure Position Speed (m/s) 

Curved architecture head x (m) 1.621347 
1.000000 

Curve architecture head y (m) 1.585569 

Section 1 x (m) -1.199008 
0.991156 

Section 1 y (m) 2.060124 

Section 51 x (m) 1.778852 
0.975967 

Section 51 y (m) 4.135598 

Section 101 x (m) -1.062092 
0.974345 

Section 101 y (m) -5.800207 

Section 151 x (m) 0.43945 
0.972425 

Section 151 y (m) -7.004213 

Section 201 x (m) -7.951723 
0.970989 

Section 201 y (m) -0.702747 

4. Minimum Curve Pitch Exploration 

A simple analysis shows that since each section is a rectangle with a width, the smaller the 

curvature  the more likely it is that an inter-section collision will occur, which corresponds to an 

inevitably smaller running time, and implies that the distance between the front handle of the head of 

the curvilinear architecture and the origin  is larger. It follows that the curvature  is positively 

correlated with . 
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In this section, it is required to find a minimum curvature distance such that the curve architecture 

reaches the boundary of the turnaround space with the front handle of the head of the curve 

architecture without collision. Then it is easy to find a critical condition: the corresponding curvature 

distance  is the minimum curvature distance when the derived  in the case of a collision reaches 

its maximum. 

4.1. Minimum Curve Pitch Modeling 

Let the radius of the boundary circle be , when , it is easy to know that 

, the unit . From this paper,  . Therefore, it is only 

necessary to search the approximate range of  starting from  with a fixed step size, and 

then take a smaller step size for grid search near the optimal result, so as to obtain more accurate 

results. 

4.2. Minimum Curvature Pitch Model Solving 

(1) Preliminary search 

Take 0.001 meter as the step size, search for the curvature distance in the range, and substitute it 

into the collision detection model until a collision occurs. Record the position of the handle in front 

of the head of the curve architecture at this point and calculate the Euclidean distance between this 

position and the origin. If this distance exceeds the radius of the header space, the next iteration is 

performed. Eventually, it is concluded that the minimum curvilinear distance lies between (0.450, 

0.451) meters, from which the second round of search is initiated. 

(2) Accuracy search 

For the second search, the smallest curvature distance is searched within (0.450, 0.451) m with a 

step size of 0.000001 m. The above Euclidean distance is minimized when the smallest curvature 

distance is obtained to be 0.450343m. The solving result section is shown in Fig. 4. 

To solve the model in this section, the curves shown in Fig. 4 are obtained by first searching the 

grid in steps of ℎ =  0.001𝑚. 

 

Fig. 4 Curve versus distance searched in steps of 0.001m 

Fig. 4 illustrates the image of the function 𝑑(𝑝), where p represents the curvature distance and d 

represents the Euclidean distance between the center of the front handle of the head of the curved 

architecture and the origin at the time of collision. The figure depicts the complex relationship 

between the distance between the center of the front handle of the head of the curved architecture and 

the origin as a function of the curvature distance. The searched results are 𝑝 =  0.45 𝑚 and 𝑑 =
4.57194 𝑚. This indicates that at 𝑝 =  0.45 𝑚, the collision has already occurred before the curved 

architecture head front handle has entered the turnaround space. Therefore, it is necessary to refine 

the search interval to, and reduce the search step size by changing the search step size to 0.000001m 

after the grid search to obtain the results shown in Fig. 5. 
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Fig. 5 Curvature versus distance searched with a step size of 0.000001𝑚 

The Euclidean distance between the center of the front handle of the head of the curved architecture 

and the origin is about 4.57297 m at the curvilinear distance 𝑝 = 0.450342 𝑚, while the distance is 

about 4.40358 m at the curvilinear distance 𝑝 = 0.450343 𝑚 . With the small change of the 

curvilinear distance of only 0.000001 m, the front handle of the head of the curved architecture can 

enter the head turning space smoothly without collision. Therefore, it can be inferred that 𝑝 =
0.450343𝑚 is the smallest curvature boundary that allows the front handle of the curved head to 

enter the turnaround space. 

5. Conclusion 

In this paper, a mathematical model based on differential equation model and multiple search 

algorithm is constructed for the optimization of path and velocity control scheme of curved 

architecture. By introducing the curve equation and the first-class curve integral, the motion trajectory 

of the curved architecture is effectively calculated, and the velocity and position changes of each 

section are found by using the Runge-Kutta method. In terms of collision detection, the interaction 

between the sections is defined and the safe termination time of the curve motion is determined by 

recognizing the collision conditions in time through an iterative method. Finally, by analyzing the 

inverse relationship between the Euclidean distance and the curve distance, the design of the 

turnaround space is successfully optimized, and the minimum curve distance is precisely solved by 

applying the multiple search algorithm. In summary, this research not only provides a new method 

for the dynamic analysis of curvilinear architectures, but also provides a reference for the 

development of related technologies in the field of machine motion planning and other areas. 
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