Highlights in Science, Engineering and Technology SDPIT 2025
Volume 131 (2025)

Curve Architecture Optimization Based on Multiple Search
Algorithms

Huipeng Xie “*, Zhengbin Xu " and Fengyuan Hu
School of Mathematical Sciences, Chengdu University of Technology, Yibin, China
" These authors also contributed equally to this work
* Corresponding Author Email: 3407751918@qg.com

Abstract. The purpose of this paper is to construct and analyze a model for collision detection and
velocity regulation in curved architectures based on multiple search algorithms using curve function
and differential equation models. The study first calculates the arc length by curve equations and
first-class curve integrals to determine the position and velocity of the curve architecture per second.
Based on this, the differential equations of the polar angles of each part of the curved architecture
are modeled with respect to time, and the approximate solutions are obtained using the Runge-Kutta
method. Then, algebraic and geometric knowledge is applied to construct the position equations. In
addition, this paper defines the collision conditions and constructs a collision detection model by an
iterative method to finally derive the termination time. Finally, the relationship between the inverse
curvature distance and the Euclidean distance between the parts of the curve architecture is
demonstrated for the speed control aspect, and the multiple search algorithm is used to perform an
accurate search and derive the minimum curvature distance corresponding to the maximum
Euclidean distance. The results of this paper provide an effective optimization scheme for curved
architectures, which is especially important in areas such as machine motion planning.

Keywords: Curve architectures, Runge-Kutta method, differential equations, multiple search
algorithms.

1. Introduction

In this paper, the Runge-Kutta method [1] and differential equations [2] are comprehensively
applied, while multiple search algorithms [3] are used to analyze the motion state of the curved
architecture [4], and the dynamic characteristics of the curved architecture during the spiral process
are deeply investigated. Firstly, the motion trajectory of the curve architecture in the specified time
is calculated by setting the initial conditions. Secondly, focusing on detecting the interactions between
the sections, the termination moment of the curve disking in was determined and the final position
and velocity were recorded. Finally, the optimization of the minimum curvature pitch in the
turnaround space [5] was explored to ensure that the head of the curve architecture can enter the
turnaround region smoothly. This study not only provides a new perspective for the dynamic analysis
of curved architectures, but also provides a useful reference for algorithmic applications in the field
of machine motion [6].

2. Curve Architecture Position and Velocity Analysis

The goal of this section is to calculate the position and velocity of the entire curved architecture
per second. The parameters of the section are known, and the curve architecture coils clockwise along
an equally spaced curve with a curvature of 55 cm, with the center of each handle evenly spaced
across the curve. In cases where the analytical velocity solution is difficult to obtain, numerical
differentiation methods can be used, such as difference quotient type numerical differentiation
formulas versus interpolation type numerical differentiation formulas. It should be noted that the
velocity is a vector quantity, which requires not only the magnitude of the velocity of the curve
architecture at each moment, but also the direction of its velocity at some moments.
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2.1. Curve Architecture Modeling
The polar coordinate equations of an isometric curve are expressed as follows:

r=al+0b (1)

T is the polar diameter in polar coordinates, ¢ is the polar angle, and a,b are all parameters.
Suppose the initial angle of the curve at the origin is 0. Then & =0 By the special property of
isometric curves, for any two polar angles <., when these two polar angles satisfy the following
relationship:

a=p+2x (2)
Their corresponding polar angles are satisfied:
Ta—T5=0D (3)

Where p is the curvilinear distance. The associative formula is obtained:

=5 ©

Further, the equidistant curve equation is obtained as:

_p
r=45-9 ()

Transform each point (=€) on the curve into coordinates under the Cartesian coordinate system
(z,9).

{w = afcosb
y = afsin

(6)

Assume that initially, the center of the front handle of the head of the curve architecture is at point
A. Let the front handle of the head of the curved structure be the first handle, and then 2,3, ---, 224
handle. Let the position of the <rd handle be (z:,¥) , and the polar angle of the <rd handle be ¢: |
then the polar angle of the center of the front handle of the head of the curved architecture 6. , and
the polar angle of the front handle of the head of the curved architecture at the initial momentis o .
Known. Let the action distance of the front handle of the head of the curved architecture be s | the
action time be ¢ , and the action speed be v. Then:

s=ut (7)
On the other hand, by integrating the curves of the first type, one obtains.

o,
s= / \/(a cosf, — ab,sinb,) *> + (asinb, + ab,cosH,) 2 do, (8)
gl)

The travel speed of the front handle of the curved architecture head is always 1 m/s, so the action
speed of the front handle of the curved architecture head is numerically equal to 1. Hence the equation
is obtained:

o
/ \/(a cos, — ab;sinb,) % + (asin@; + ab,cosb,)>do, =t 9)
0

The equation is derived from 6. on both sides at the same time, and then the reciprocal is taken
on both sides at the same time, and it is noted that €. varies from 6o downwards, so that we get:

%9; —_ (\/(a00391 — ab,sin6,) % + (asin®, + ab,cosb,) 2)71 (10)
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It is possible to obtain €. = 6.(t) from Eqg. Obviously, at the initial moment, 6.(0) =6, . This
gives the position of the head of the curve architecture per second:

{x1 = ab, (t)cosb, (t) .
v, = ab; (t)sinb, (t) (1D
Let the magnitude of the velocity of the <nd handle be v , and its components along the z,v -

axis direction be va,vs, |, respectively, and the derivation of Eq. with respect to time ¢ yields the
magnitude of the velocity of the handle in front of the head of the curved architecture as:

U1z (t) - dx;t(t)
U1y (t) - dy(llt(t) (12)

(%1 (t) - V ’0122: + U12y

From this paper, it is easy to know that the distance between the centers of the first two handles
and the centers of the remaining handles are constant, let the distance between the center of the <nd
handle and the center of the 7+1rd handle is L.,s=1,2,---,223 it iseasy to know that.

Ly =1L;="-= Lo (13)

So let L. = Ls=---= Lxx; = L | then the position of the <+1th handle can be calculated by the
following equation.

{\/(1’z'$z'+1)2+ (yi*yz‘+1)2:LlaZ’:1 (14)

\/(37/ - l'z'+1)2 + (yt - yvz+1) 2 = L,else

This gives the position of the i+1nd handle as (z:.1(t),y:+1(t)). Similarly, its derivative with
respect to time ¢ vyields the velocity of the ¢+ 1th handle as.

dz; (¢
Ui+lz(t) =& ;;( )
dy,; 1 (t

_ ./ 2 2
'Uz‘+1(t) =V Vi1 T Vig1y

Finally, the mathematical model for this section is developed:
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C, = %cos 0,(t) — %01 (£)sind, ()

C,= %sin@l (t) + %el () cosb, (1)
1
DO oo

2.(t) = 561 () cosd: (1)

3 (1) = 50, ()sind (1) (16)

O dy, (1)\?
w0 = (%) + (%)
L= \/(xz(t) *$i+1(t))2+ (yi(t) *ym(t))z

dz; 1 (t)\? dy; 1 (t)\?
’Uz'+1(t) - \/(33 ;;( )> + (y :l;( )>
i=1,2,3,,223

2.2. Solving for Position and Velocity

For the model that has been developed in this section, it is first necessary to solve the first order
ordinary differential equation.

de, (1)
— = f(%,0,),0 <t <300
91(0) =0,

Considering that the differential equations cannot be solved analytically, it is decided in this paper
to approximate them numerically with the help of the Runge-Kutta method. The fourth order Runge-
Kutta method is chosen to solve the numerical solution of this differential equation. The fourth-order
standard Runge-Kutta method, as a high-precision single-step explicit method, has a simple
computational procedure and can meet the accuracy requirements. In this section, the fourth-order
standard Runge-Kutta formulation is as follows:

O = 00, 12 (K 2K+ 2K, + K)
Kl - f(tnaeln)

1 1
1 1
K3f<tn+2h,01n+2hK2)

K4 — f(tn + h791n + h/K3)

Where h is the step size and the local truncation error isé: (¢, +1) — 61,1 =O(R*) |

The next step in solving numerical differentiation involves approximating the derivative value of
a function at a node using the function value at the discrete node. The three-point formula is an
ingenious method used to solve numerical differentiation by interpolating at specific points to
approximate the derivative. In this section, for a given function value z:(%0),z.(t),z:(t.) on three
nodes to,t1 =to + h,t2 =to +2h  there are:
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V; (to) = xz"(to) = % [* 3z; (to) + 4z (tl) - (tQ)]

0. (8) =2/ (8) = 5 [, (1) + 7.(1)] (19)

0.(1a) =/ (1) = o [.(t0) — 4, (1) + 3. (1))

The known parameters provided in the text: » =0.55m,L,=2.86m,L =1.65m are substituted
into the formula and the Runge-Kutta method is applied to solve the differential equations involved
in the formula. Also, the three-point formula in the interpolated numerical differential equation is
utilized to perform the numerical differential approximation involved in Eq.

The positions and velocities of the front handle of the head of the curve architecture, the front
handle of the 1st, 51st, 101st, 151st, and 201st sections of the body behind the head of the curve
architecture, and the rear handle of the tail of the curve architecture are solved for Os, 60s, 120s, 180s,
240s, and 300s, and from the results, it can be seen that the positions and velocities of the different
sections change as the movement of the curve architecture proceeds. For example, the position of the
head of the curve architecture along the x-axis and y-axis changes considerably at different points in
time, while the velocity remains relatively constant. From the head of the curved architecture to the
tail of the curved architecture, the velocity value of each node shows a gradual decrease, which may
be due to the attenuation phenomenon in the process of energy transfer during the action of the curved
architecture.

0 8 6 4 2 0 2 a4 &5 8 10
Fig. 1 Motion trajectory of the handle in front of the head of the curved architecture

Fig. 1 presents the trajectory of the handle in front of the head of the curved architecture, which
contains two curves: one is the blue dashed line, and the other is the red solid line. The blue dashed
line represents the disk-in curve, while the red solid line represents the trajectory of the handle in
front of the head of the curved architecture. In the trajectory of the curved head handle, the distance
between any two neighboring positions is nearly the same, which is due to the constant velocity of
the curved head handle.

3. Collision Detection Analysis

This section extends the simulation of the curve architecture motion path based on the previous
section until the simulation is terminated when a collision occurs. The first task is to construct a
collision detection model, which does abstraction of the knots and defines knots collision as
intersections on the plane. The collision detection model is built by detecting whether the knots
intersect in the plane or not. Over time, until the collision occurs, the collision moment and its
neighboring time (excluding future moments) are considered as the termination point, and the
previous model is used to calculate the position and velocity of the curve architecture.
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3.1. Collision Modeling

The entire curve architecture is carefully analyzed, and the collision event must first affect the
head of the curve architecture. In the isometric curve scenario, the space in which the head of the
curve moves toward the origin is narrower, and the probability of collision increases accordingly. In
fact, the probability of collision is higher for the head of the curve than for the other sections.
Therefore, it is reasonable to perform collision detection only on the head of the curved architecture
to determine the termination moment. Abstracting the knots as thickness-free rectangles, a sufficient
condition for two knots to collide is that their rectangular regions overlap. Note that rectangle overlap
is equivalent to one rectangle vertex being inside the other rectangle. Therefore, it is only necessary
to check whether any vertex of the section at the head of the curve architecture is inside the rectangular
region of the other section (except for the first section body). If the vertex is inside the section, it is
determined to be a collision; otherwise, there is no collision.

A D
X

Y

Fig. 2 Points inside and outside the rectangle

As shown in Fig. 2, rectangle ABCD | point X is inside the rectangle and point ¥ is outside
the rectangle. Let for any point Z connected with the four vertices of the rectangle, respectively,
from four triangles: AZAB, AZAD, AZCD, AZBC | the corresponding areas are denoted as:
S1,52,83,5. . Then, from Fig. 2, it follows that:

4
ZSZ' =8 8cps Point inside the rectangle
i=1
4 (20)
ZS} > Suscps Point outside the rectangle
i=1

Analytically, when a vertex of the head of the curve architecture satisfies the formula inside the
rectangular area (e.g., in Fig. 2, the position of point X'), the sections collide; otherwise (e.g., in Fig.
2, the position of point Y"), no collision occurs.

Let the head of the curve architecture be section 1, followed by section2, 3, ---, 223 .S, (k) which
isthe Jjthareaof the kth vertex of the head of the curve architecture with respect to the 2 th section,
and the length of the <th section is % and the width w. Thus, the collision condition is:

4
S8, =lw,i=3,-,223, k=1,2,3,4 @1
j=1

However, there is a rounding error, so it is corrected to a collision detection model:

4
> 08,(k) <lw,i=3,--,223, k=1,2,3,4 (22)
j=1
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3.2. Collision Model Solution

Using the Helen's formula and solving first with a time step of 1s, the result of 414s is obtained,
which means that the curve architecture has a collision time in interval (413, 414] . To obtain a more
accurate result, searching with 413s as the starting point and a step size of 0.01s, the following result
is obtained as in Fig. 3.

413.03s

e

o

o—

e —— "
A

-10
Fig. 3 The collision moment and the motion trajectory of the curve architecture
It is stated that the collision time of the curve architecture occurs at 413.03s, so the termination
moment can be 413.02s. In other words, no collision occurs between the nodes (i.e., the curve
architecture cannot continue to be coiled in) at t = 413.02s.
Finally, with t=413.02s known, the position and velocity of the curve architecture at this point are
solved using Eq. Partial results are shown in table 1.

Table 1. Partial results of the position and velocity of the curve architecture now of termination

Structure Position | Speed (m/s)
Curved architecture head x (m) | 1.621347 1.000000
Curve architecture head y (m) | 1.585569 '
Section 1 x (m) -1.199008
Section 1y (m) 2.060124 0.991156
Section 51 x (m) 1.778852
Section 51y (m) 4.135598 0.975967
Section 101 x (m) -1.062092
Section 101y (m) -5.800207 0.974345
Section 151 x (m) 0.43945
Section 151y (m) -7.004213 0.972425
Section 201 x (m) -7.951723
Section 201 y (m) -0.702747 0.970989

4. Minimum Curve Pitch Exploration

A simple analysis shows that since each section is a rectangle with a width, the smaller the
curvature p the more likely it is that an inter-section collision will occur, which corresponds to an
inevitably smaller running time, and implies that the distance between the front handle of the head of
the curvilinear architecture and the origin @ is larger. It follows that the curvature » is positively

1
correlated with .
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In this section, it is required to find a minimum curvature distance such that the curve architecture
reaches the boundary of the turnaround space with the front handle of the head of the curve
architecture without collision. Then it is easy to find a critical condition: the corresponding curvature

distance ? is the minimum curvature distance when the derived ¢ in the case of a collision reaches
its maximum.

4.1. Minimum Curve Pitch Modeling

Let the radius of the boundary circle be #2, when »=0.55m it is easy to know that
d=1.62804"+1.57814% =5.14104 | the unit 7. From this paper, d... =2 . Therefore, it is only
necessary to search the approximate range of p starting from »o=0.55 with a fixed step size, and
then take a smaller step size for grid search near the optimal result, so as to obtain more accurate
results.

4.2. Minimum Curvature Pitch Model Solving

(1) Preliminary search

Take 0.001 meter as the step size, search for the curvature distance in the range, and substitute it
into the collision detection model until a collision occurs. Record the position of the handle in front
of the head of the curve architecture at this point and calculate the Euclidean distance between this
position and the origin. If this distance exceeds the radius of the header space, the next iteration is
performed. Eventually, it is concluded that the minimum curvilinear distance lies between (0.450,
0.451) meters, from which the second round of search is initiated.

(2) Accuracy search

For the second search, the smallest curvature distance is searched within (0.450, 0.451) m with a
step size of 0.000001 m. The above Euclidean distance is minimized when the smallest curvature
distance is obtained to be 0.450343m. The solving result section is shown in Fig. 4.

To solve the model in this section, the curves shown in Fig. 4 are obtained by first searching the
grid in stepsof h = 0.001m.
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Fig. 4 Curve versus distance searched in steps of 0.001m

Fig. 4 illustrates the image of the function d(p), where p represents the curvature distance and d
represents the Euclidean distance between the center of the front handle of the head of the curved
architecture and the origin at the time of collision. The figure depicts the complex relationship
between the distance between the center of the front handle of the head of the curved architecture and
the origin as a function of the curvature distance. The searched results are p = 0.45m and d =
4.57194 m. This indicates thatat p = 0.45 m, the collision has already occurred before the curved
architecture head front handle has entered the turnaround space. Therefore, it is necessary to refine
the search interval to, and reduce the search step size by changing the search step size to 0.000001m
after the grid search to obtain the results shown in Fig. 5.
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Fig. 5 Curvature versus distance searched with a step size of 0.000001m

The Euclidean distance between the center of the front handle of the head of the curved architecture
and the origin is about 4.57297 m at the curvilinear distance p = 0.450342 m, while the distance is
about 4.40358 m at the curvilinear distance p = 0.450343 m. With the small change of the
curvilinear distance of only 0.000001 m, the front handle of the head of the curved architecture can
enter the head turning space smoothly without collision. Therefore, it can be inferred that p =
0.450343m is the smallest curvature boundary that allows the front handle of the curved head to
enter the turnaround space.

5. Conclusion

In this paper, a mathematical model based on differential equation model and multiple search
algorithm is constructed for the optimization of path and velocity control scheme of curved
architecture. By introducing the curve equation and the first-class curve integral, the motion trajectory
of the curved architecture is effectively calculated, and the velocity and position changes of each
section are found by using the Runge-Kutta method. In terms of collision detection, the interaction
between the sections is defined and the safe termination time of the curve motion is determined by
recognizing the collision conditions in time through an iterative method. Finally, by analyzing the
inverse relationship between the Euclidean distance and the curve distance, the design of the
turnaround space is successfully optimized, and the minimum curve distance is precisely solved by
applying the multiple search algorithm. In summary, this research not only provides a new method
for the dynamic analysis of curvilinear architectures, but also provides a reference for the
development of related technologies in the field of machine motion planning and other areas.
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