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Abstract. In this paper, we study the vanishing and residue of the Pontryagin classes on singular
foliations on smooth manifolds. Specifically, we extend the Bott Vanishing Theorem to singular
foliations that admit resolutions by vector bundles, which can be represented by L. -algebroids, and
subsequently prove the Residue Existence Theorem for this type of singular foliations. Our results
provide a way of computing the characteristic classes, particularly the Pontryagin classes on smooth
manifolds using cohesive modules developed by J. Block. This approach potentially offers a new
path in studying the differential geometry and topology of singular foliations beyond the traditional
operator algebraic approach.
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1. Introduction

Connected with topology, differential geometry, and algebraic geometry, the residues associated
with the singularities of foliations have been a rich field of research as it encodes the intrinsic topology
of the manifolds. In Baum and Botts work [9], the residues of holomorphic foliations arelinked to
polynomials in the Chern classes of the normal bundles and the tools to study the structures of
singularities in complex manifolds are developed. Further, this theory has been extended to
Riemannian foliations in Lazarov and Pasternak’s work [21] and generalized to projective foliations
by S. Nishikawa [24]. Meanwhile, the concept of the Pontryagin polynomial residues off isolated
singulars in real foliations has been introduced in Schweitzer and Whitman’s work [28], applying
residue theory beyond holomorphic foliations. However, their research was restricted to isolated
singularities, which is a rather strong restriction. This instinctively leads to the question whether this
restriction can be removed to achieve a more general result. This research aims to remove this
restriction to provide a more comprehensive residue theory for real smooth foliations with both
isolated and nonisolated singularities. This study offers new insights into the topology of foliations
with more complex singular structures and provides a more flexible toolkit for examining the
topological and geometric characteristics of real foliations.

There are two key objects we are studying in this research: the Pontryagin classes andsingular
foliations. First, the Pontryagin classes are a type of characteristic classes, serving as a crucial
topological invariant for smooth manifolds. They are useful in providing insights into the topology
and geometry of vector bundles. Moreover, singular foliations are a generalization of regular
foliations which allow singularities and thus their complex ities result in challenges in the
interpretation of construction of differential geometry and topology such as the Pontryagin classes.
In this paper, we focus on studying the conditions under which thePontryagin classes vanish,yielding
a residue theorem on singular foliations with certain types of singularities and homological properties.

Since traditional tools in differential geometry often avoid singularities, this study aimsto approach
the goal by employing higher categorical and homotopical methods, i.e. Higher differential geometry,
including L., -algebroids [25] [26] [16] [20] and cohesive modules [12] [3]. By generalizing theBott
Vanishing Theorem, we show that the Pontryagin classes vanish outside the singular set of the
singular foliations which can be resolved by vector bundles, thereby establishing a new residue
existence theorem. Note that although more of the tools we used could be formulated in terms of o
-categories, we would not develop a theory using oo -categorical language in this paper to keep the
content more concrete and computable.
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This paper is structured as follows:

(1) Introduce the key tools and objects L,-algebroids, cohesive modules, singular foliations, and
Ponrtyagin classes.

(2) Extend the definition of Pontryagin classes to cohesive modules and foliations represented by
L. -algebroids.

(3) Generalize theBott Vanishing theorem and residue existence theorem to singular foliations
with resolutions.

(4) Discuss the implications of our results and outline possible future works.

2. Pontryagin Classes on Foliations

Differential geometry provides the necessary tools and language to precisely describe and analyze
the geometric properties of spaces, particularly those that are smoothly curved like manifolds.
Understanding concepts such as differentiable manifolds, vector bundles, connections, and curvature
is crucial for grasping the behavior of singular foliations within these spaces. After equipping
ourselves with the analytical prowess required to tackle the complexities of characteristic classes, we
can form a deeper comprehension of their significance and applications in the study of singular
foliations.

2.1. Foliations.

A foliation provides a way to decompose a manifold into leaves, which are disjoint immersed sub
manifolds of the same dimension. These leaves fit together smoothly, resembling a stack of pages in
a book or the layers of an onion. More formally, we have the following definition:

Definition 2.1 ([22). Let M be a smooth manifold of dimension n.A (regular) foliation F of
codimension g on M is described in the following equivalent ways:

(1) Foliation Atlas: A foliation atlas {¢;: U; = R™*"9 x RY} of M where the transition functions

¢ij = ¢; o ;' are of the form

¢:;(x,y) = (95;(x,¥), hij(¥)) (1)

With respect to the decomposition R™ = R"*7%7 x RY .Here, x € R"™4 represents coordinates
along the leaves (leaf directions) and y € R? represents coordinates transverse to the leaves
(transverse directions). Each connected component of. ¢;*(R""9 x {y}) , for a fixedy € R? , is
called a plaque. Plagues glue together smoothly to form the leaves of the foliation, which are
immersed sub manifolds of dimension n — g

(2) Submersions and Haefliger Cocycle: An open cover {U;} of M with submersions S; U; —
RY such that on overlaps U; N U; there exist diffeomorphisms

)/ij:sj(Ui N U]) - Si(Ui n l]j) (2)

Satisfying y;; o sj|ul— NnU; = Silui N U; . This implies that the level sets of the submersions S;
coincide on overlaps. The collection {y;;} satisfies the cocycle condition y;; oy =y and is
called the Haefliger cocycle representing F

(3) Integrable Sub-bundle: An integrable sub-bundle. F Of the tangent bundle TM of rank n —
q . Integrability means that for any vector fields X,Y € I'(F), their Lie bracket [X,Y] also lies in
I'(F) .We oftendenote T'(F) by F and F by TF. This condition ensures that the tangent spaces to
the leaves form a smooth distribution.

(4) Differential Ideal: A locally trivial differential ideal J =@}_, J* of rank g in the de Rham
complex Q°*(M) . This ideal consists of differential forms that vanish when restricted to the leaves of
the foliation.

When a manifold M is equipped with a foliation F, the pair (M, F) is called a foliated manifold.
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The first two descriptions highlight the local structure of a foliation, emphasizing the
decomposition into leaf directions and transverse directions. The third description captures the
integrability condition crucial for the existence of leaves as immersed submanifolds. The fourth
description connects foliations to the algebraic structure of differential forms.

The leaf space M/F is obtained by identifying points on the same leaf. Understanding the
topology and geometry of the leaf space is a central theme in the study of foliations. However, M /F
often lacks a good manifold structure, making its analysis challenging.

Since most foliations come from group action or symmetry, which tends to result in singular points,
the study of only regular foliations is rather limited. While there are a few methods to work with
singularities in conventional differential geometry, they are not universal. The use of higher
categorical and homotopical theory, i.e., higher structures in. differential geometry, or so-called
higher differential geometry in the recent progress of. Differential geometry is a promising way of
solving singularity problems.

Let M be a smooth manifold and E be a smooth real vector bundle over M.

We use C*(M) to denote the algebra of smooth real valued functionson M .We use C*(M;E)
to denote the module of smooth sections of the vector bundle E

Definition 2.2. A singular foliation on M is a submodule F of tangent module T, =
C*(M;TM) satisfying:

(1) F Islocally finitely generated.

(2) F Isinvolutive, i.e. [F,F]lc F

Here are some simple examples:

Example 2.3. We consider a partition of R into 3 leaves: R, {0} and R} . This partition
corresponds to various foliations F, with k > 0 where F, is the module generated by the vector

field x"% and is different for each k
Example 2.4. We consider the partition of R into 2 leaves: R% and {x} forevery x < 0. This
foliation is defined by any module generated by the integral curves of any vector field f % where

f(x) vanishes for every x < 0.

Example 2.5. We consider the partition of R? into 2 leaves: {0} and R?*\{0} given by the
action of a Lie group G ,where G can be GL(2,R) , SL(2,R) ,or C* .While the foliation is
different for each action, the corresponding F, are equal to T,R? at each non-zero x € R?
However, F, is the Lie algebra g.

2.2. L,-algebroids.

Higher differential geometry uses higher categorical and homotopical methods to study higher
structures in differential geometry and topology. Generally speaking, singularities in higher geometry
imply that there exist hidden higher structures behind. We can then use homological aigebra or
homotopical algebra to resolve it, which yields a new geoemtric objects. Among many new ideas in
higher geometry, L-algebroids are naturally associated with singular foliations. In [16] and [20]
Laurent-Gengoux, Lavau, and T. Strobl discovered that for any singular foliation F which can be
resolved by vector bundles, there exists a unique L. -algebroid g called the universal L-algebroid
naturally associated to F . This L.-algebroid g can be thought as a homotopical replacement of F .
In fact, in [25] and [26], Nuiten developed a homotopy theory of L-algebroid using semi-model
categories. Under Nuiten’s framework, we can then regard g as a cofibrant replacement of F in
the category of L.-algebroid.

Roughly speaking, L, -algebroid is a combination of generalizations of Lie algebra in two
directions:

(1) (Horizontal categorification) Generalize the brackets of a Lie algebra to higher brackets, i.e.,
not only just 2-brackets, but also 3-brackets, 4-brackets etc. and these brackets satisfy a homotopical
version of Jacobi identity, which means that the 2-bracket does not satisfy the (strict) Jacobiidentity,
but satisfy Jacobi identity up to homotopy. This type of new algebraic objects is called L-algebras
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(2) Vertical categorification) If we regard Lie algebra as a category with one object,then we can
generalize it to a category with many objects.We assume a set of objects to be a manifold M,where
themorphism associated with it is a Lie algebra above each point,then globally we get a vector bundle
A over M A naturally acts on M through the bracket. We call A a Lie algebroid.

Combining these two ways of categorification (vertically and horizontally) on Lie algebras, we
can then get L.-algebroids.

Let us first define L-algebras.

Definition 2.6. An L -algebra is a graded vector space E equipped with a family of graded
symmetric k -multilinear maps ({---}x)k=1 Of degree +1, which holds true for the generalized
Jacobi identities, i.e.

n

Z Z £ {J}{{xa'(i:l- e xu’([:l}ii Xa(it1)r =+ Xain :'}ﬂ-i'l-l =0 (3)

=1 el ({n=-i0)

For every homogeneous element xg, ..., x, € E, where U,(i,n —1i) is the set of (i,n—1i) -
unshuffles (the permutations o of n elements which preserves the order of the first i elements and
thelast n — i elements:

o) <-<a(i), oi+1)<--<aln) 4

And e(o) is the sign induced by the permutation of elements in the symm etric algebra of E.

Let us take note that these higher brackets actually correspond to cohomology of Lie algebra under
deformation.

Next, let us take a look at another direction of categorification of Lie algebras.

Definition 2.7. A Lie algebroid over M is a vector bundle A - M ,equipped with a vector
bundle morphism p: A —» TM, i.e., the anchor map, and a Lie bracket [.,.]4, on I'(4) such that the
Leibniz identity holds true:

Vx,y €I'(A), f € CM) [x fyla=flx,y]la + p(O)Ifly. (5)
And the Lie algebra homomorphism condition:
vx,y € I'(A) p(lx,y1a) = [p(x), p(W)]. (6)

Lie algebroid is one of the most important tools in studying the theory of foliation. We can regard
Lie algebroids as the infinitesimal version of Lie groupoids. A Lie groupoid is a groupoid (a category
where all morphisms are invertible) such that both objects and morphisms are smooth manifolds. For
any foliations F ,there are several Lie groupoids that canbe constructed from F , such as the
holonomy groupoid Hol(F) and the monodromy groupoid Mon(F)[22]. On the other hand, we can
also construct (singular) foliations from Lie algebroids.In fact, given any Lie algebroid A,the image
of its anchor map p(A) € TM Yyields a singular foliation.

Definition 2.8. Let M be a smooth manifold. We denote the sheaf of functions of M by C . Let
E be a sequence E = (E_;)j<1< Of vector bundles over M.A L. — algebroid (orLieco —
algebroid) structure on E is defined by:

(1) A degree 1 vector bundle morphismp: E_; — TM i.e. the anchor of the Lie oo-algebroid.

(2) A family of graded symmetric k -multilinear maps ({-:- }x)x=1 Of degree +1 on the sheaf of
graded vector spaces I'(E) with the following constraints:

(1) Leibniz conditions:

(@)The unary bracket d:={};:I'(E) > I'(E) is O -linear, i.e., it forms a family d;:E_; -
E_;,, of vector bundle morphisms, where d; = 0.

(b) Forall x e '(E_;) andy € I'(E), it satisfies

. fy}2 = flx.y}a + p(OIfly (1)
Where {x,fy}, = f{x,y}, forall x e '(E_;) with i > 2
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(c)Each of the maps {:--},, is C -linear, forall n >3
(2) Higher Jacobi identities

(@ pedy; =0

(b) di_yod; =0 Forall i >3

Egg p({{x,y}) = [p(x),p(y)] Forall x,y € I'(E_;)

n

Z Z E{J){{xg“), ...,xg(l:,}“xc,(“”,...,Xg(n:,}ﬂ_[-l_l = ﬂ. (8)

i=1 gelly(in—i)

Foralln > 2 , and for all homogeneous elements x;, ..., x, € I'(E)

When E_; =0 forall i >n+ 1 aLie oo-algebroid structure over M is a Lie oo-algebroid. In
some literatures, for example [25] [26], Lie oo-algebroids are referred to. L.-Algebroids as it’s a
globalization of L.-algebras.

Remark 3.9. Note that [20] and [16] use graded symmetric bracket {---} in the definition of L,
-algebroids. We will follow [25] [26] using the graded antisymmetric products [---].As a
consequence, [20] and [16] started the index -1 whereas we would start from 0.

One of the most important results in singular foliation theory is that people found the intrinsic
relation between singular foliations and Lie oo-algebroids. In fact, once a singular foliation admits a
resolution by vector bundles (of finite amplitude), then we can construct a natural L., -algebroids
from the resolution.

Theorem I. [20] [16] Let (E, Q) Bea universal Lie 00 -algebroid resolving a singular foli-. Ation
D .Then,

(1) For any Lie oo-algebroid (E',Q") that defines a sub-singular foliation of. D D
D(i.e.,p'(F'(E'—1)) c D ), thereisaLie o algebroid morphism from (E’,Q") to (E,Q) over
the identity of. M And any two such lie co -algebroid morphisms are homotopic.

(2) Two universal Lie 00 algebroids resolving the singular foliation D are isomorphic up to
homotopy, and two such isomorphisms are homotopic.

2.3. Pontryagin classes.

The Pontryagin classes, named after the Russian mathematician. Lev Pontryagin, serve as a crucial
topological invariant and offer important information about the geometric structures and topologies
of vector bundles. By distinguishing non-isomorphic vector bundles, the Pontryagin classes are
applied widely in different areas including the topology of manifolds and obstruction Theory. The
Pontryagin algebra Z[py, ..., p[n/2; i defined using the cohomology of the classifying space of GL,,.

Definition 2.10. Let E —» X be an n -dimensional vector bundle over a paracompact space
X.Let

gg:X = BGL, 9)

Be the map, unique up to homotopy.

Theorem II. [11]

The polynomial ring Z[py, ..., Pn/2)(With p; € H*(BGL,) canonically defined) is isomorphic
to the cohomology ring H*(BGL,,) : Therefore,

H*(BGLy; R) = R[py, ..., Ppny2] (10)
We define the i-th (real) Pontryagin class of E tobe
pi(E) = g&(p;) € H¥(X;R) (11)

. n
Fori=1,.., [EJ
Moreover, we define the (real) Pontryagin ring of. E Tobe the graded subring
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Pont*(E) : = g;(H*(BGL,;R)) € H*(X; R) (12)

3. Cohesive modules on foliations

Cohesive modules, introduced by J. Block in [12], give systematic and convenient generalization
of geometry objects such as derived categories of complex manifolds [12] and gerbes [10] and local
systems on smooth manifolds of foliations [13]. This provides a useful tool in the analysis of
differential and topological properties of foliated spaces by providing insights into how the local
geometry of the leaves interacts with the overall geometric structure of the manifolds encoded by
the Z-connections

3.1. Cohesive modules over smooth manifolds.

Cohesive modules over smooth manifolds can be roughly regarded as complexes of vector bundles
with Z-connections. Module is a generalization of vector bundles. Particularly, the sections of the
bundles are treated as modules over the ring of smooth functions on the manifold. In fact, by
SerreSwan theorem, vector bundles over smooth manifolds are equivalent to finitely generated
projective modules over the smooth functions. Moreover, the idea of cohesion ensures the
compatibility with both the differential and geometric properties of the manifold using the Z -
connections, which is a generalization of Quillen’s superconnection in. [27] [23]

Definition 3.1. Let A = (4°,d,c) be a curved dga. Note the A° usually corresponds to the
“function” part of the dga, if we regard 0-5h degree as ordinary geometry and higher components as
higher structures. For example, 2°(M) = ¢®(M) is just the smooth functions on M .We define
the dg -category P, as follows?

(1) An object E = (E,,E) in P, is a cohesive module, which is a finitely generated and
projective Z -graded (but bounded in both directions) right module E, over A° together witha Z-
connection that

E:E,Q4A° > E, QyA° (13)
Satisfying the integrability condition such that the relative curvature vanishes
Fg(e) =EoE(e)+e-c=0 (14)

Foralle € E, .
(2) The morphisms of degree k. PX(E,, E,) between two cohesive modules E; = (E.;,E;) and
E, = (E.,, E,) of degree k are

{p:E.s QuA° > E., ®4A° | Of degree k and ¢p(ea) = ¢p(e)a, Va € A’} (15)
With the standard differential defined
d(p)(e) = Ex(p(e)) — (=1)?1p(E;(e)) (16)
Therefore,
Py (Ex, E;) = Homj(E.y, E., ®4 A7) (17)

Let E = (E_;);>; beasequence of positively graded vector bundles over a manifold M. We then
have a one-to-one correspondence between NQ-manifold structures on E and Lie oo -algebroid
structures over E . Further, for any singular foliation F which can be resolved by vector bundles,
the foliation dga associated to F be A = SymgY[—1] where g is the L. -algebroid constructed
from the resolution. Then we can consider P, which is the dg category of cohesive modules over g ,
hence can be regarded as cohesive modules over the singular foliation F.

One special case is to consider the anti-homomorphic tangent bundle as a complex foliation
on TcM , then we have the following theorem which generalize derived categories on complex
manifolds
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Theorem 3.2 ([12]). Let X be a compact complex manifold, and g = T%X be the Dolbeault Lie

algebroid. The homotopy category of the dg-category Modgg?g) = Rep, 4 is equivalent to the

bounded derived category of chain complexes of sheaves of O x-modules with coherent cohomology
onX.

3.2. Pontryagin classes of cohesive modules.

One direct generalization of Pontryagin classes of the normal bundles associated to a foliation is
to consider the Pontryagin classes are defined using a Lie pair, i.e., a Lie algebroid A and one of its
Lie subalgebroids. Usually, Lie algebroids provides lots of examples of singular foliations, hence this
approach is already an important tool in singular foliation theory. In this paper, in order to deal with
a more general type of singular foliation, we aim to generalize this by using an L., -pair,i.e.,an L,
-algebroid and one of its L, subalgebroids, to provide an alternative definition. Of Pontryagin
classes.

Definition 3.3. Let us consider a L, -algebroid g — Mand a vector bundle E - M of rank k
with a linear g —connection

V:I'(A) x ['(E) - I'(E). (18)

SupposeRy € 22%(g, Hom(TM, g)) to be the curvature of V. We define the form R: € 0%i(q,
End(E)) for i > 1 by:

RE = (Ry)! € Endge(y)(2°(g, E)). (19)
Then, by
[dv, K] :=dyo K — (1)K o dy = dygnak- (20)
We have:
dyenaRY = [dy, RY] = [dy, Ry)'] = [dy, d3'] = 0 (21)
Therefore, with
(e(a)) = tr(dygnaR?) = 0. (22)

fr(RY) Defines (@ cohomology class) in H?(g)

Definition 3.4. Let. E Be a vector bundle over M andlet g - M Bea L, -algebroid.

The g-Pontryagin characters of. E Are defined for anylinear g -connection V on E .The
cohomology classes ol (E): = [tr(R%)] € H?!(g), fori > 1.

The g-Pontryagin algebra of E isthe R -subalgebra Pont3(E) € H"(g) generated by theg -

Pontryagin characters.
Definition 3.5. The (characteristic polynomial) is defined as

k
det{ﬂ . [k‘ + X) = Zfa {X)-;I-k_I (23)

i=0

For i a positive integer which is the homogeneous polynomials f; of degree i on gl(k,R) for
k>i>0

Definition 3.6. Since these characteristic polynomials are obviously Gl(k,R) -invariant, for each
i > 1 wedefinethe i -th g -Pontryagin class of E as:

pg(E) := [fza (%R‘F)] € H*(g) (24)

For any choice of connectionV : I'(g) x I'(E) — I'(E) .The g -Pontryagin classes of E
generate together Pontg (E) . The total 9 -Pontryagin class of E is defined by
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py(E) = [det (Ik +21—HR?) =1+ pi(E) + p3(E) + -+ p’,(E) € Pont;(E) (25)

L
2]
3.3. Bott connection on singular foliations.

Bott connection offers a way of differentiation along the leaves of a foliation, which is significant
in helping grasp the cohomological and homotopical properties of foliations via the characteristic
classes.

Definition 3.7.For the C*(M) -module N = X(M)/F the Lie bracket of vector fields
descends to a map F x N — N .After fixing a leaf L ,let us consider the Lie algebroid A, —

L ,whose sections are given by F,/J,F, .Let us also consider the normal bundle N, = % - L,

whose space of sections is N /3, V.
The Bott connection on N; is induced by the Lie bracket as follows:

Vi O (L A X C¥(Li Ny = €2 (LN, Vigy(Y) = ([X,Y]). (26)

The map V,, is a flat Lie algebroid connection, i.e., a Lie algebroid representation of A, on
N, .This thus can be considered the same as a Lie algebroid morphism

Vit A, - Der(NL). (27)

Where Der(NL) isthe Liealgebroid over L whose sections are given by CDO(N,) i.e., the first
order differential operators D: C*(L; NL) - C*(L; NL) such that there exists a vector field o, €
X(M) with D(fX) = fD(X) + ap(X)(f)X

4. Baum-bott theorem for smooth singular foliations

Baum and Bott made significant strides in the study of singularities in the context of holomorphic
vector fields on complex manifolds [9]. They pioneered the study of residues of singularities of
holomorphic foliations, a crucial aspect in understanding the. Underlying topology and geometry of
the foliation. However, their work was primarily focused on the case where the dimension of the
connected components of the singular set was equal to (r — 1), where r is the dimension of the leaves
of the foliation.

Lazarov and Pasternack [21] extended Baum and Bott’s work [3] and explored the residues of
singularities of a Riemannian foliation defined on a Euclidean space.They considered a more specific
setting, with only a single singularity at the origin.Their work contributed to our understanding of
how singularities can shape the global properties of a foliation.

Furthering this line of research, S. Nishikawa [24] generalized Lazarov and Pasternack’s findings
to projective foliations, thereby expanding the scope of the study to a more general and abstract setting.
However, like Baum and Bott, Nishikawa’s study also imposed a restriction on the dimension of the
singularset of the foliation.

Our work aims to continue this trajectory by considering general singular foliations on smooth
manifolds and providing an explicit formula for the residues of the connected components of the
singular set, without imposing any restrictions on its dimension.The crux of our approach lies in
reducing the problem of computing the residues of the singular set of the foliation to the problem of
computing the residues of a zero set of a vector fieldon M .To achieve this,we leverage the method
of transgression,a powerful technique in differential geometry due to Chern and Weil.This approach
allows us to bypass the limitations of previous studies and provides a more general framework for
studying the residues of singularities in Riemannian foliations.

4.1. Bott Vanishing theorem.
Definition 4.1. A basic connection V on NF is one such that
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Vx(2) = n[X,Z], (28)

Forall X € I'(E) where Z € X issuchthat n(Z) = Z

Lemma 4.2. Under the assumption that E is integrable, there exists a basic connection on NF.

Lemma 4.3. Let 7 Bea basic connection on NF, and k the curvature of V.Then k(X,X') =0
forall X, X' € I'(E).

Proof. Let Z € I'(NF) and Z € X with m(Z) = Z .Then

k(X X)(Z) = VyVy, (Z) — Vi, Vx(Z) — Vg xa(2)

N - 29
= vy (n[X", 2]) — Wy, (n[X.2]) — [[X, X’],Z]. (29)
But we can choose
n[X,Z] =[X, 7],
nlX',Z] =[X,Z7], (30)
SO
k(X,X)(Z) == [x, (X', Z]] —n [x’, X, Z]] —n [[x, X'],Z] = 1(0) = 0 (31)

By the Jacobi identity.

Lemma 4.4. Let U, € M be a simultaneously trivializing neighborhood for NF and E , o0, a
smooth frame for NF over U, .Let I,(E) betheidealin A*(U,) generated by those 1-forms which
vanish on I'(E|y,). Let k* be the curvature matrix associated to the frame Ua by a basic
connection. Then each k{; € I, (E).

Proof. Over U, E can be described as the set of tangent vectors on which certain 1-forms
61, ..., 84 vanish, these 1-forms being linearly independent at each point of U, .In particular, I3(E)
is generated by 64, ...,6, .Complete these to a basis of 1-forms by 6.4, ..., 8, these last restrict to
a basis of E;,, Vvp € U, . Consider a nontrivial form

g+l=i<j=n
Clearly, there are X,X' € I'(E|y,) such that
w(X,X") £ 0. (33)

By Lemma (6.3), it follows that each k;; € I, (E).

Theorem | (Bott Vanishing Theorem [11]). If E < TM s integrable and if the quotient bundle
NF = TM/E has fiber dimension. U , then Pont® (NF) =0 for k > 2q.

This is really a global integrability condition. Indeed, for any n-dimensional bundle, set

P(E) =1+ py(E) + -+ Diyz (E). (34)

Because the leading term is 1, this is an invertible element of the ring H*(X; R) of formal infinite

series ap +a, +--+a,+- , a; € H(X;R).If E' c E is a subbundle, the basic “duality”
formula holds:

p(E/E") = p(EN)"'p(E), (35)

And shows that thePontryagin classes of E/E’ depend only on theisomorphism classes of E and
E' and not on the embedding E’ c E . Thus, we can reformulate(*) as follows.

Theorem |1 (Bott vanishing theorem version 1l [11]). If E ¢ TM is a subbundle which is
isomorphic to an integrable subbundle E' €« TM and if NF = TM/E,q = dim(NF) then Pont®
(NF)=0 fork > 2q
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4.2. Bott Vanishing Theorem on Lie Algebroids.

A direct generalization of Bott VVanishing theorem is to generalize Pontryagin classes of the normal
bundle to an involutive subbundle of the tangent bundle to the case of normal bundle (or
representation).Since the core object is aflat F -basic connection on a smooth vector bundle TM/F ,
that can be extended to alinear TM -connection to define Pontryagin characters or classes, one can
easily prove a similar result for the existence of a flat partial connection on a smooth vec tor
bundle.Furthermore,the construction is adapted to the more general A -Pontryagin (where A is a
Lie algebroid over M ) classes of a vector bundle E.

Let A be a Lie algebroid over a smooth manifold M ,and let B be a subalgebroid of A over
M .Let n be the rank of A ,and [ be the rank of B .Set q:=n — 1, the rank of A/B i.e.the
codimension of B ,or the annihilator B° of B .Let E be a smoothvectorbundle over M ,with a
flat B -connection V .It is not difficult to see that V can be extended to an A -connection
V:I'(A) X I'(E) - I'(E) , satisfying

Vbe = Vb (36)

Forall b eI'(B) and e € I'(E).

Define the space I°(B) c 2°(A) as the ideal in 2°(A) generated by the 1-forms vanishing on
B .That is, it is generated by the sections of the annihilator B° < A* of B. It is explicitly given by
I°(B) = {0} c 2°(4) = c®°(M) and

I'(B) =w € Q"(A) | w(by, ...,b.) = 0 forall by, ...,b, € T'(B) (37)

Forr>1

Choose an openset U ¢ M trivializing A and B .That is,there is a smooth frame (al,...,an) for
A over UI such that (aq+1,...,an) is a smooth frame for B .Consider the dual frame (ay, ..., @)

of A* over U . By construction, (ay,...,a,) is a smooth frame for B° over U .Since I*(B)
isgenerated as an ideal by I'(B°) forr =1 ,anelement UU of I"(U) canbe written as?

q
w = Z w; A ay (38)
i=1
With w; € 271(A) . Therefore, since B° has rank U , the wedge product
(@)™ =I'B)A-AI'(B) (q+] times) (39)
Must necessarily vanish. It is now easy to see that
Ry(b,b")e = Ry(b,b)e =0 (40)

For b,b' €I'(B) and all e € I'(E) ,and so Ry € I*(B) Q¢ '(End(E)). This implies
RL € (I*(B))’ ®c= I'(End(E)). and so R, = 0 for i >q .More generally, for a GL(k,R)
invariant polynomial of degree d on g[(k,R) ,the 2d -form P(Rg) € 22%(A) is an element of
(IZ(B))d ,andso P(Ry) =0 for d > q

As a summary, this section has proved the following result.

Theorem I11 (Bott Vanishing Theorem for Lie algebroids [17]). Let E be a smooth vector bundle
over a smooth manifold M andlet A be a Lie algebroid over M .If there existsa Lie subalgebroid
B of A of codimension g with a linear partial representation V:I'(B) X I'(E) —» I'(E) , then the
Pontryagin algebra

Pont,(E) € H*(A) (41)

Are all trivial for [ > 2q
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Remark 5.5. Given an ordinary linear connection V:X(M) x I'(E) — I'(E) on a vector bundle
E of rank k, a Lie algebroid A — M defines a linear A -connection V4:T'(A) x I'(E) — I'(E)

by

Ve = Vye. (42)
It is easy to see that
[p(Roa)] = p*[p(Re)] € H*(A) (43)
For any GL(k,R) -invariant polynomial p on gl(k,R) .Here, p* is the cochain map
p*: (2°(M),d) —» (12°(4),dy), (44)
Defined by
p*(w)(ay, ..., a5) = w(p(ay), ..., plag)) forw € 25(M) a (45)
As observed by Fernandes in [15], these yields
Pont}(E) = p*(Pont’(E)) (46)
Or more precisely
cWy(E) = p* o cw(E). 47

Therefore, it is not hard to show the following obstruction result in terms of the classical
Pontryagin algebra of E.

Corollary 3.2. Let E be a smooth vectorbundle over a smooth manifold, M and let A be a Lie
algebroid over M . If there exists a Lie subalgebroid B of A of codimension g with a linear
representation V: I'(B) X I'(E) — I'(E) , then the Pontryagin algebra

Pont*(E) c H*(M) (48)

All lie in the kernel of p*: H*(M) — H*(A) for | > 2q
If a Lie algebroid A has asubalgebroid B of codimension g, then B isrepresentedon A/B via
the flat Bott connection

VB:r(B) xI'(A/B) » I'(A/B), Via=I[b,al. (49)

Hence, Pont,(A/B) < H*(A) is trivial forl > 2q . This yields obstructions to a subalgebroid
structure on B c A of codimension q.

However, in the case A=TM and B = F, the algebroid FM is in fact more than just a
subalgebroid, which implies the classical Bott VVanishing theorem.

In this section, we consider a singular foliation F which has a resolution by vector bundles, and
G c F being a sub-foliation. It’s natural to ask whether the Bott vanishing theorem is valid in this
setting
Proof.

4.3. Residue existence theorem for singular foliations.
Let F be asingular foliation which admits its resolution
0T (E_p) > T(E_pyq) o> T(E_) > T(E)>F - (50)

And g is the universal L., -algebroid over A associated with the complex of vector bundles.
By assumption, F is a perfect complex over C* (M), this implies that the normal module of F, i.e.,
FL is also aperfect complex, which admits anatural resolution since

0> T(E_) > T(E_pyq) =+ > T(E_q) > T'(Ep) > TM > F+ -0, (51)
Is exact. In other words, we define NF to be the complex
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0-T(E_p) = I'(E_pyq) = > T(E-y) > T(Ep) > TM = 0, (52)

Which is quasi-isomorphic to F+ . Therefore, we can regard F is a subalgebroid of a tangent
module T,, as and L, -algebroid, i.e., (Ty,qg) is an L, -pair. Note that, we have the quasi-
isomorphism T,, = E, @ NF, .Using the L., -structure on Fwe can build partial Z -connection
over the foliation dga A.

Proposition 4.6. [BZ] There exists a Bott Z -connection E over the foliation dga A associated
to F:

E:E ®,A4 > E ®,A (53)

Where A = A® is the foliation dga

NF.Note that using Prop 16.3 in [29] and Lemma 6.19 in [25], this is equivalent to the case that
E @ NF carries an L,-structure, where the brackets vanish with more than one inputs from NF.

This Bott connection naturally lifts to a full Z over the de Rham dga 2°(M) ,sincelocally F is
a submersion, and then we can always lift a local section s of F to a local section S of Ty, with
n(3) = s .Equivalently, we want to lift the output of all brackets with more than one inputs from NF.

Lemma 4.7. There exists a lift of Eto a Z -connection E over the de Rham dga, i.e., we can lift
the L.-algebroid structureon [E toan L.-algebroidon E @ NF

Also notice that E @ NF = T,,, where the quasi-equivalence is induced by the natural map

[(Ey) —5—+ F —— Tu

- -

L (54)
_-""’J

Tm

Let [E denote the Bott Z -connection. Now we have lifted the cohesive module NF with a Bott
ZL -connection on over the foliation dga A = Symg"[—1] to a full Z-connection over the de Rham
dga 2° to TM as(TM,E) . We consider the characteristic classes computed from E.

Let S =US; be afinite union of singular sets, where each S; is compactly supported.

Theorem IV (Bott Vanishing Theorem for singular foliations). The pontryagin classes of the
normal module F* ,vanishes on M| MM |y M|y nfoOT Pont* =0 for | >2q,=0=01>2q [ >
2q. where N =U; N; and each N; is an arbitrarily small open neighborhood of. S; and g is the
codimension of theregular leaves.

Proof. Note that on M\N, the anchor map u has constant rank and F|,,, regular foliation,
which implies that the linear part of g is quasi-isomorphic to a single term complex E,, which is
then isomorphic to the vector bundle underlying Fon M\N . Now NF [,y is quasi-isomorphic to
I'(Ey) =» Ty,ie.E; =0,i >0 .Asaresult, all components of E vanish except

I'(Eo) - I'(Ep) ® 21 (M). (55)

Now, by the Bott Vanishing Theorem for Lie algebroid (Theorem I11), regarding I'(Ey) Ip\n aS
a subalgebroid of Ty Iy n,PONt'(NF) Iy y= 0 for I > 2q.

Therefore, the Pontryagin class is contained in S , which means it is only non-zero in S the
singular sets, which is the residue.

Definition 4.8. Let the singular setshe S =U S; where each S; is a connected component which
is compact supported. The residue Res,(F,S;) is defined as follows:

(1) A Z -connection IE on NF associated with F over M

(2) An open ¢ -neighborhood N of S; whose closure is compacted supported, where ean
arbitrarily small real number is.

Note that givena Z -connection, any closed differential form. a;(IE) which represents. p;(NF).

is a globally well-defined form. The residue at S; is thus defined as
Res, (F,x) = [, ¢ (a1 (E), ..., ax_1(E)) € R (56)
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Where the polynomial ¢(ay, ..., a;x—1) Vvanishes outside N.

Residue Existence Theorem for singular foliations. With the well-defined residue, we note that the
construction pulls back to U’ under the diffeomorphism f:U'" - U , and that changing the
orientation of M barely changes the sign of the integral.

Let M be compact. Let E be a Bott Z -connection on NF over M .Let N; be the
e neighborhood foreach S; € S be W; ofsuchthat N; ’s has pairwise disjoint closures. Let «a;([E)
be a form representing p(E) .Note that, from observation in Theorem IV, a;(E) reduces to
a;(V) € 0¥ (M) on N, where V is the regular connection component of E whereN, = M\U;N;.

From transgression formula in 4.3, we know that a;(E) is closed, and is in H*(NF @ g) Since
we have the quasi-isomorphism F+ ~ NF = NF - Ty, and Ty = NF @ g where g = F.a;(E)
Is equivalent to a formin H*(Ty,) = HY (M) i.e. a;(E) represents the Pontryagin class p;(M) €
H* (M).Therefore, we can finally complete the proof of the Residue Existence Theorem for Singular
Foliations:

D Res,@5) =) [ ¢(@®) . mu(®)

58 5iES t
=L¢@ﬁmwuﬂdmn (57)

= ([¢p(ai(B), ..., ap_,(E))]. [M])
= (¢p(ay(E), ..., ap_1 (E)), [M])

5. Conclusion

In conclusion, we extend the classical Bott VVanishing Theorem using the higher categorical and
homotopical tools including L..-algebroids and cohesive modules to explore the Pontryagin classes
on singular foliations. Our key findings include the demonstration of the conditions of vanishing and
the applications of the residue theorem to foliations with singularities, which helps pave the way for
future study of the characteristic classes on more general types of singular foliations on smooth
manifolds. This is also an effort to translate the methods and toolsfrom algebraic geometry and
complexgeometry to C* geometry, which is intrinsically much more difficult than the previous two.
In the future, wecould also investigate an infinitesimal formula to calculate the residue and then
generalize it to the case of singularities with even fewer restrictions.
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