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Abstract. In this paper, we study the vanishing and residue of the Pontryagin classes on singular 
foliations on smooth manifolds. Specifically, we extend the Bott Vanishing Theorem to singular 
foliations that admit resolutions by vector bundles, which can be represented by 𝐿∞-algebroids, and 
subsequently prove the Residue Existence Theorem for this type of singular foliations. Our results 
provide a way of computing the characteristic classes, particularly the Pontryagin classes on smooth 
manifolds using cohesive modules developed by J. Block. This approach potentially offers a new 
path in studying the differential geometry and topology of singular foliations beyond the traditional 
operator algebraic approach. 
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1. Introduction 

Connected with topology, differential geometry, and algebraic geometry, the residues associated 

with the singularities of foliations have been a rich field of research as it encodes the intrinsic topology 

of the manifolds. In Baum and Botts work [9], the residues of holomorphic foliations arelinked to 

polynomials in the Chern classes of the normal bundles and the tools to study the structures of 

singularities in complex manifolds are developed. Further, this theory has been extended to 

Riemannian foliations in Lazarov and Pasternak’s work [21] and generalized to projective foliations 

by S. Nishikawa [24]. Meanwhile, the concept of the Pontryagin polynomial residues off isolated 

singulars in real foliations has been introduced in Schweitzer and Whitman’s work [28], applying 

residue theory beyond holomorphic foliations. However, their research was restricted to isolated 

singularities, which is a rather strong restriction. This instinctively leads to the question whether this 

restriction can be removed to achieve a more general result. This research aims to remove this 

restriction to provide a more comprehensive residue theory for real smooth foliations with both 

isolated and nonisolated singularities. This study offers new insights into the topology of foliations 

with more complex singular structures and provides a more flexible toolkit for examining the 

topological and geometric characteristics of real foliations.  

There are two key objects we are studying in this research: the Pontryagin classes andsingular 

foliations. First, the Pontryagin classes are a type of characteristic classes, serving as a crucial 

topological invariant for smooth manifolds. They are useful in providing insights into the topology 

and geometry of vector bundles. Moreover, singular foliations are a generalization of regular 

foliations which allow singularities and thus their complex ities result in challenges in the 

interpretation of construction of differential geometry and topology such as the Pontryagin classes. 

In this paper, we focus on studying the conditions under which thePontryagin classes vanish,yielding 

a residue theorem on singular foliations with certain types of singularities and homological properties.  

Since traditional tools in differential geometry often avoid singularities, this study aimsto approach 

the goal by employing higher categorical and homotopical methods, i.e. Higher differential geometry, 

including 𝐿̇∞ -algebroids [25] [26] [16] [20] and cohesive modules [12] [3]. By generalizing theBott 

Vanishing Theorem, we show that the Pontryagin classes vanish outside the singular set of the 

singular foliations which can be resolved by vector bundles, thereby establishing a new residue 

existence theorem. Note that although more of the tools we used could be formulated in terms of ∞ 

-categories, we would not develop a theory using ∞ -categorical language in this paper to keep the 

content more concrete and computable.  
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This paper is structured as follows:  

(1) Introduce the key tools and objects 𝐿∞-algebroids, cohesive modules, singular foliations, and 

Ponrtyagin classes.  

(2) Extend the definition of Pontryagin classes to cohesive modules and foliations represented by 

𝐿∞ -algebroids. 

(3) Generalize theBott Vanishing theorem and residue existence theorem to singular foliations 

with resolutions. 

(4) Discuss the implications of our results and outline possible future works. 

2. Pontryagin Classes on Foliations 

Differential geometry provides the necessary tools and language to precisely describe and analyze 

the geometric properties of spaces, particularly those that are smoothly curved like manifolds. 

Understanding concepts such as differentiable manifolds, vector bundles, connections, and curvature 

is crucial for grasping the behavior of singular foliations within these spaces. After equipping 

ourselves with the analytical prowess required to tackle the complexities of characteristic classes, we 

can form a deeper comprehension of their significance and applications in the study of singular 

foliations. 

2.1. Foliations.  

A foliation provides a way to decompose a manifold into leaves, which are disjoint immersed sub 

manifolds of the same dimension. These leaves fit together smoothly, resembling a stack of pages in 

a book or the layers of an onion. More formally, we have the following definition: 

Definition 2.1 ([22). Let 𝑀 be a smooth manifold of dimension n.A (regular) foliation ℱ of 

codimension 𝑞 on 𝑀 is described in the following equivalent ways: 

(1) Foliation Atlas: A foliation atlas {𝜙𝑖: 𝑈𝑖 → ℝ𝑛−𝑞 × ℝ𝑞} of 𝑀 where the transition functions 

𝜙𝑖𝑗 = 𝜙𝑖 ∘ 𝜙𝑗
−1 are of the form 

𝜙𝑖𝑗(𝑥, 𝑦) = (𝑔𝑖𝑗(𝑥, 𝑦), ℎ𝑖𝑗(𝑦))                           (1) 

With respect to the decomposition ℝ𝑛 = ℝ𝑛−𝑞 × ℝ𝑞  .Here, 𝑥 ∈ ℝ𝑛−𝑞  represents coordinates 

along the leaves (leaf directions) and 𝑦 ∈ ℝ𝑞  represents coordinates transverse to the leaves 

(transverse directions). Each connected component of. 𝜙𝑖
−1(𝐑𝑛−𝑞 × {𝑦}) , for a fixed 𝑦 ∈ ℝ𝑞 , is 

called a plaque. Plaques glue together smoothly to form the leaves of the foliation, which are 

immersed sub manifolds of dimension 𝑛 − 𝑞  

(2) Submersions and Haefliger Cocycle: An open cover {Ui} of M with submersions Si Ui →
ℝq such that on overlaps Ui ∩ Uj there exist diffeomorphisms 

𝛾𝑖𝑗: 𝑠𝑗(𝑈𝑖 ∩ 𝑈𝑗) → 𝑠𝑖(𝑈𝑖 ∩ 𝑈𝑗)                          (2) 

Satisfying 𝛾𝑖𝑗 ∘ 𝑠𝑗|𝑢𝑖 ∩ 𝑈𝑗 = 𝑠𝑖|𝑢𝑖 ∩ 𝑈𝑗 . This implies that the level sets of the submersions 𝑆𝑖 

coincide on overlaps. The collection {𝛾𝑖𝑗} satisfies the cocycle condition 𝛾𝑖𝑗 ∘ 𝛾𝑗𝑘 = 𝛾𝑖𝑘  and is 

called the Haefliger cocycle representing ℱ  

(3) Integrable Sub-bundle: An integrable sub-bundle. F Of the tangent bundle TM of rank n −
q . Integrability means that for any vector fields X, Y ∈ Γ(F), their Lie bracket [X, Y] also lies in 

Γ(F) .We often denote Γ(F) by ℱ and ℱ by Tℱ. This condition ensures that the tangent spaces to 

the leaves form a smooth distribution. 

(4) Differential Ideal: A locally trivial differential ideal 𝒥 =⊕k=1
n 𝒥k of rank 𝓆 in the de Rham 

complex Ω•(M) . This ideal consists of differential forms that vanish when restricted to the leaves of 

the foliation. 

When a manifold 𝑀 is equipped with a foliation ℱ, the pair (𝑀, ℱ) is called a foliated manifold. 
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The first two descriptions highlight the local structure of a foliation, emphasizing the 

decomposition into leaf directions and transverse directions. The third description captures the 

integrability condition crucial for the existence of leaves as immersed submanifolds. The fourth 

description connects foliations to the algebraic structure of differential forms.  

The leaf space 𝑀/ℱ  is obtained by identifying points on the same leaf. Understanding the 

topology and geometry of the leaf space is a central theme in the study of foliations. However, 𝑀/ℱ 

often lacks a good manifold structure, making its analysis challenging. 

Since most foliations come from group action or symmetry, which tends to result in singular points, 

the study of only regular foliations is rather limited. While there are a few methods to work with 

singularities in conventional differential geometry, they are not universal. The use of higher 

categorical and homotopical theory, i.e., higher structures in. differential geometry, or so-called 

higher differential geometry in the recent progress of. Differential geometry is a promising way of 

solving singularity problems. 

Let 𝑀 be a smooth manifold and 𝐸 be a smooth real vector bundle over 𝑀. 

We use 𝐶∞(𝑀) to denote the algebra of smooth real valued functions on 𝑀 .We use 𝐶∞(𝑀; 𝐸) 

to denote the module of smooth sections of the vector bundle 𝐸 

Definition 2.2. A singular foliation on 𝑀  is a submodule ℱ  of tangent module 𝑇𝑀 = 

𝐶∞(𝑀; 𝑇𝑀) satisfying: 

(1) ℱ Is locally finitely generated.  

(2) ℱ Is involutive, i.e. [ℱ, ℱ] ⊂ ℱ 

Here are some simple examples: 

Example 2.3. We consider a partition of ℝ  into 3 leaves: R, {0}  and  ℝ+
∗  . This partition 

corresponds to various foliations ℱ𝑘 with 𝑘 > 0 where ℱ𝑘 is the module generated by the vector 

field 𝑥𝑘 ∂

∂𝑥
 and is different for each 𝑘 

Example 2.4. We consider the partition of ℝ into 2 leaves: ℝ+
∗  and {𝑥} for every 𝑥 ≤ 0. This 

foliation is defined by any module generated by the integral curves of any vector field 𝑓
∂

∂𝑥
 where 

𝑓(𝑥) vanishes for every 𝑥 ≤ 0. 

Example 2.5. We consider the partition of ℝ2  into 2 leaves: {0} and ℝ2\{0} given by the 

action of a Lie group 𝐺  ,where 𝐺  can be GL(2, ℝ) , SL(2, ℝ) ,or ℂ∗  .While the foliation is 

different for each action, the corresponding ℱ𝑥  are equal to 𝑇𝑥ℝ2  at each non-zero 𝑥 ∈ ℝ2 

However, ℱ0 is the Lie algebra 𝔤. 

2.2. 𝑳∞-algebroids. 

Higher differential geometry uses higher categorical and homotopical methods to study higher 

structures in differential geometry and topology. Generally speaking, singularities in higher geometry 

imply that there exist hidden higher structures behind. We can then use homological aigebra or 

homotopical algebra to resolve it, which yields a new geoemtric objects. Among many new ideas in 

higher geometry, 𝐿∞-algebroids are naturally associated with singular foliations. In [16] and [20] 

Laurent-Gengoux, Lavau, and T. Strobl discovered that for any singular foliation ℱ which can be 

resolved by vector bundles, there exists a unique 𝐿∞-algebroid 𝑔 called the universal 𝐿∞-algebroid 

naturally associated to ℱ . This 𝐿∞-algebroid 𝑔 can be thought as a homotopical replacement of ℱ . 

In fact, in [25] and [26], Nuiten developed a homotopy theory of 𝐿∞-algebroid using semi-model 

categories. Under Nuiten’s framework, we can then regard 𝑔 as a cofibrant replacement of ℱ in 

the category of 𝐿∞-algebroid. 

Roughly speaking, 𝐿∞  -algebroid is a combination of generalizations of Lie algebra in two 

directions: 

(1) (Horizontal categorification) Generalize the brackets of a Lie algebra to higher brackets, i.e., 

not only just 2-brackets, but also 3-brackets, 4-brackets etc. and these brackets satisfy a homotopical 

version of Jacobi identity, which means that the 2-bracket does not satisfy the (strict) Jacobiidentity, 

but satisfy Jacobi identity up to homotopy. This type of new algebraic objects is called 𝐿∞-algebras  
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(2) Vertical categorification) If we regard Lie algebra as a category with one object,then we can 

generalize it to a category with many objects.We assume a set of objects to be a manifold 𝑀,where 

themorphism associated with it is a Lie algebra above each point,then globally we get a vector bundle 

𝐴 over 𝑀 𝐴 naturally acts on 𝑀 through the bracket. We call 𝐴 a Lie algebroid. 

Combining these two ways of categorification (vertically and horizontally) on Lie algebras, we 

can then get 𝐿∞-algebroids.  

Let us first define 𝐿∞-algebras. 

Definition 2.6. An 𝐿∞-algebra is a graded vector space 𝐸 equipped with a family of graded 

symmetric 𝑘  -multilinear maps ({⋯ }𝑘)𝑘≥1  of degree +1, which holds true for the generalized 

Jacobi identities, i.e. 

             (3) 

For every homogeneous element  𝑥1, … , 𝑥𝑛 ∈ 𝐸 , where 𝑈𝑛(𝑖, 𝑛 − 𝑖)  is the set of (𝑖, 𝑛 − 𝑖)  -

unshuffles (the permutations 𝜎 of 𝑛 elements which preserves the order of the first 𝑖 elements and 

thelast 𝑛 − 𝑖 elements: 

𝜎(1) < ⋯ < 𝜎(𝑖),  𝜎(𝑖 + 1) < ⋯ < 𝜎(𝑛)                     (4) 

And 𝜖(𝜎) is the sign induced by the permutation of elements in the symm etric algebra of 𝐸. 

Let us take note that these higher brackets actually correspond to cohomology of Lie algebra under 

deformation.  

Next, let us take a look at another direction of categorification of Lie algebras. 

Definition 2.7. A Lie algebroid over 𝑀  is a vector bundle 𝐴 → 𝑀  ,equipped with a vector 

bundle morphism 𝜌: 𝐴 → 𝑇𝑀, i.e., the anchor map, and a Lie bracket [. , . ]𝐴 on 𝛤(𝐴) such that the 

Leibniz identity holds true: 

∀𝑥, 𝑦 ∈ 𝛤(𝐴),  𝑓 ∈ 𝐶∞(𝑀) [𝑥, 𝑓𝑦]𝐴 = 𝑓[𝑥, 𝑦]𝐴 + 𝜌(𝑥)[𝑓]𝑦,            (5) 

And the Lie algebra homomorphism condition: 

∀𝑥, 𝑦 ∈ 𝛤(𝐴) 𝜌([𝑥, 𝑦]𝐴) = [𝜌(𝑥), 𝜌(𝑦)].                      (6) 

Lie algebroid is one of the most important tools in studying the theory of foliation. We can regard 

Lie algebroids as the infinitesimal version of Lie groupoids. A Lie groupoid is a groupoid (a category 

where all morphisms are invertible) such that both objects and morphisms are smooth manifolds. For 

any foliations ℱ  ,there are several Lie groupoids that canbe constructed from ℱ  , such as the 

holonomy groupoid Hol(ℱ) and the monodromy groupoid Mon(ℱ)[22]. On the other hand, we can 

also construct (singular) foliations from Lie algebroids.In fact, given any Lie algebroid 𝐴,the image 

of its anchor map 𝜌(𝐴) ⊂ 𝑇𝑀 yields a singular foliation. 

Definition 2.8. Let 𝑀 be a smooth manifold. We denote the sheaf of functions of 𝑀 by 𝒞 . Let 

𝐸  be a sequence 𝐸 = (𝐸−𝑖)𝑖≤1≤∞  of vector bundles over 𝑀 .A 𝐿∞ − 𝑎𝑙𝑔𝑒𝑏𝑟𝑜𝑖𝑑  (or𝐿𝑖𝑒 ∞  −
𝑎𝑙𝑔𝑒𝑏𝑟𝑜𝑖𝑑) structure on 𝐸 is defined by: 

(1) A degree 1 vector bundle morphismρ: E−1 → TM i.e. the anchor of the Lie ∞-algebroid.  

(2) A family of graded symmetric k -multilinear maps ({⋯ }k)k≥1 of degree +1 on the sheaf of 

graded vector spaces Γ(E) with the following constraints: 

(1) Leibniz conditions:  

(a)The unary bracket 𝑑 : = {⋅}1: 𝛤(𝐸) → 𝛤(𝐸) is 𝒪  -linear, i.e., it forms a family 𝑑𝑖: 𝐸−𝑖 →
𝐸−𝑖+1 of vector bundle morphisms, where 𝑑1 = 0. 

(b) For all 𝑥 ∈ 𝛤(𝐸−1) and 𝑦 ∈ 𝛤(𝐸), it satisfies 

{𝑥, 𝑓𝑦}2 = 𝑓{𝑥, 𝑦}2 + 𝜌(𝑥)[𝑓]𝑦                         (7) 

Where {𝑥, 𝑓𝑦}2 = 𝑓{𝑥, 𝑦}2 for all 𝑥 ∈ 𝛤(𝐸−𝑖) with 𝑖 ≥ 2  
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(c)Each of the maps {⋯ }𝑛 is 𝒞 -linear, for all 𝑛 ≥ 3  

(2) Higher Jacobi identities  

(a) 𝜌 ∘ 𝑑2 = 0  

(b) 𝑑𝑖−1 ∘ 𝑑𝑖 = 0 For all 𝑖 ≥ 3  

(c) 𝜌({𝑥, 𝑦}) = [𝜌(𝑥), 𝜌(𝑦)] For all 𝑥, 𝑦 ∈ 𝛤(𝐸−1)  

(d) 

             (8) 

For all 𝑛 ≥ 2 , and for all homogeneous elements 𝑥1, … , 𝑥𝑛 ∈ 𝛤(𝐸) 

When 𝐸−𝑖 = 0 for all 𝑖 ≥ 𝑛 + 1 a Lie ∞-algebroid structure over 𝑀 is a Lie ∞-algebroid. In 

some literatures, for example [25] [26], Lie ∞-algebroids are referred to. 𝐿∞-Algebroids as it’s a 

globalization of 𝐿∞-algebras. 

Remark 3.9. Note that [20] and [16] use graded symmetric bracket {⋯ } in the definition of 𝐿∞ 

-algebroids. We will follow [25] [26] using the graded antisymmetric products ⌊⋯ ⌋ .As a 

consequence, [20] and [16] started the index -1 whereas we would start from 0. 

One of the most important results in singular foliation theory is that people found the intrinsic 

relation between singular foliations and Lie ∞-algebroids. In fact, once a singular foliation admits a 

resolution by vector bundles (of finite amplitude), then we can construct a natural 𝐿∞ -algebroids 

from the resolution. 

Theorem I. [20] [16] Let (𝐸, 𝑄) Bea universal Lie 00 -algebroid resolving a singular foli-. Ation 

𝒟 .Then, 

(1) For any Lie oo-algebroid (𝐸′, 𝑄′)  that defines a sub-singular foliation of. 𝒟  D 

𝒟(𝑖. 𝑒. , 𝜌′(𝛤(𝐸′ − 1)) ⊂ 𝐷 ), there is a Lie ∞ algebroid morphism from (𝐸′, 𝑄′‾) to (𝐸, 𝑄) over 

the identity of. 𝑀 And any two such lie ∞ -algebroid morphisms are homotopic. 

(2) Two universal Lie 00 algebroids resolving the singular foliation 𝐷 are isomorphic up to 

homotopy, and two such isomorphisms are homotopic. 

2.3. Pontryagin classes.  

The Pontryagin classes, named after the Russian mathematician. Lev Pontryagin, serve as a crucial 

topological invariant and offer important information about the geometric structures and topologies 

of vector bundles. By distinguishing non-isomorphic vector bundles, the Pontryagin classes are 

applied widely in different areas including the topology of manifolds and obstruction Theory. The 

Pontryagin algebra ℤ[𝑝1, … , 𝑝[𝑛/2] is defined using the cohomology of the classifying space of 𝐺𝐿𝑛. 

Definition 2.10. Let 𝐸 → 𝑋  be an 𝑛  -dimensional vector bundle over a paracompact space 

X.Let 

𝑔𝐸: 𝑋 → 𝐵𝐺𝐿𝑛                                (9) 

Be the map, unique up to homotopy. 

Theorem Ⅱ. [11]  

The polynomial ring ℤ[𝑝1, … , 𝑝[𝑛/2](𝑤𝑖𝑡ℎ 𝑝𝑖 ∈ 𝐻4𝑖(𝐵𝐺𝐿𝑛) canonically defined) is isomorphic 

to the cohomology ring 𝐻∗(𝐵𝐺𝐿𝑛) : Therefore, 

𝐻∗(𝐵𝐺𝐿𝑛; ℝ) ≅ ℝ[𝑝1, … , 𝑝[𝑛/2]]                        (10) 

We define the 𝑖-th (real) Pontryagin class of 𝐸 tobe  

𝑝𝑖(𝐸) = ℊ𝐸
∗ (𝑝𝑖) ∈ 𝐻4𝑖(𝑋; ℝ)                         (11) 

For 𝑖 = 1, … , ⌊
𝑛

2
⌋. 

Moreover, we define the (real) Pontryagin ring of. 𝐸 Tobe the graded subring 
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Pont•(𝐸) : = ℊ𝐸
∗ (𝐻•(𝐵𝐺𝐿𝑛; ℝ)) ⊆ 𝐻•(𝑋; ℝ)                   (12) 

3. Cohesive modules on foliations 

Cohesive modules, introduced by J. Block in [12], give systematic and convenient generalization 

of geometry objects such as derived categories of complex manifolds [12] and gerbes [10] and local 

systems on smooth manifolds of foliations [13]. This provides a useful tool in the analysis of 

differential and topological properties of foliated spaces by providing insights into how the local 

geometry of the leaves interacts with the overall geometric structure of the manifolds encoded by 

the ℤ-connections 

3.1. Cohesive modules over smooth manifolds.  

Cohesive modules over smooth manifolds can be roughly regarded as complexes of vector bundles 

with ℤ-connections. Module is a generalization of vector bundles. Particularly, the sections of the 

bundles are treated as modules over the ring of smooth functions on the manifold. In fact, by 

SerreSwan theorem, vector bundles over smooth manifolds are equivalent to finitely generated 

projective modules over the smooth functions. Moreover, the idea of cohesion ensures the 

compatibility with both the differential and geometric properties of the manifold using the Z -

connections, which is a generalization of Quillen’s superconnection in. [27] [23] 

Definition 3.1. Let 𝐴 = (𝐴•, 𝑑, 𝑐) be a curved dga. Note the 𝐴0  usually corresponds to the 

“function” part of the dga, if we regard 0-5h degree as ordinary geometry and higher components as 

higher structures. For example, 𝛺0(𝑀) = 𝒞∞(𝑀) is just the smooth functions on 𝑀 .We define 

the 𝑑𝑔 -category 𝒫𝐴 as follows?  

(1) An object 𝐸 = (𝐸•, 𝔼)  in 𝒫𝐴  is a cohesive module, which is a finitely generated and 

projective ℤ -graded (but bounded in both directions) right module 𝐸• over 𝐴0 together with a ℤ-

connection that 

𝔼: 𝐸• ⊗𝐴 𝐴• → 𝐸• ⊗𝐴 𝐴•                           (13) 

Satisfying the integrability condition such that the relative curvature vanishes 

𝐹𝐄(𝑒) = 𝔼 ∘ 𝔼(𝑒) + 𝑒 ⋅ 𝑐 = 0                         (14) 

For all 𝑒 ∈ 𝐸• . 

(2) The morphisms of degree 𝑘. 𝒫𝐴
𝑘(𝐸1, 𝐸2) between two cohesive modules 𝐸1 = (𝐸•1, 𝔼1) and 

𝐸2 = (𝐸•2, 𝔼2) of degree 𝑘 are 

{𝜙: 𝐸•1 ⊗𝐴 𝐴• → 𝐸•2 ⊗𝐴 𝐴• ∣ Of degree 𝑘 and 𝜙(𝑒𝑎) = 𝜙(𝑒)𝑎, ∀𝑎 ∈ 𝐴•}       (15) 

With the standard differential defined 

𝑑(𝜙)(𝑒) = 𝔼2(𝜙(𝑒)) − (−1)|𝜙|𝜙(𝔼1(𝑒))                   (16) 

Therefore, 

𝒫𝐴
𝑘(𝐸1, 𝐸2) = Hom𝐴

𝑘(𝐸•1, 𝐸•2 ⊗𝐴 𝐴•)                     (17) 

Let 𝐸 = (𝐸−𝑖)𝑖≥1 be a sequence of positively graded vector bundles over a manifold 𝑀. We then 

have a one-to-one correspondence between NQ-manifold structures on 𝐸 and Lie ∞ -algebroid 

structures over 𝐸 . Further, for any singular foliation ℱ which can be resolved by vector bundles, 

the foliation dga associated to ℱ be 𝐴 = Sym𝔤∨[−1] where 𝑔 is the 𝐿∞ -algebroid constructed 

from the resolution. Then we can consider 𝑃𝐴 which is the dg category of cohesive modules over 𝑔 , 

hence can be regarded as cohesive modules over the singular foliation ℱ. 

One special case is to consider the anti-homomorphic tangent bundle as a complex foliation 

on 𝑇𝐂𝑀  , then we have the following theorem which generalize derived categories on complex 

manifolds 
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Theorem 3.2 ([12]). Let X be a compact complex manifold, and 𝔤 = 𝑇0,1𝑋 be the Dolbeault Lie 

algebroid. The homotopy category of the dg-category 𝑀𝑜𝑑𝐶𝐸(𝑔)
𝐶𝑜ℎ = 𝑅𝑒𝑝g,A 𝑖𝑠  equivalent to the 

bounded derived category of chain complexes of sheaves of O x-modules with coherent cohomology 

𝑜𝑛 𝑋.  

3.2. Pontryagin classes of cohesive modules.  

One direct generalization of Pontryagin classes of the normal bundles associated to a foliation is 

to consider the Pontryagin classes are defined using a Lie pair, i.e., a Lie algebroid 𝐴 and one of its 

Lie subalgebroids. Usually, Lie algebroids provides lots of examples of singular foliations, hence this 

approach is already an important tool in singular foliation theory. In this paper, in order to deal with 

a more general type of singular foliation, we aim to generalize this by using an 𝐿∞ -pair, i.e., an 𝐿∞ 

-algebroid and one of its 𝐿∞  subalgebroids, to provide an alternative definition. Of Pontryagin 

classes. 

Definition 3.3. Let us consider a 𝐿∞ -algebroid 𝑔 → 𝑀and a vector bundle 𝐸 → 𝑀 of rank 𝑘 

with a linear 𝑔 –connection  

∇: 𝛤(𝐴) × 𝛤(𝐸) → 𝛤(𝐸).                          (18) 

Suppose𝑅∇ ∈ 𝛺2(𝔤, Hom(𝑇𝑀, 𝔤)) to be the curvature of ∇. We define the form 𝑅∇
𝑖 ∈ 𝛺2𝑖(𝔤, 

End(𝐸)) for 𝑖 ≥ 1 by: 

𝑅∇
𝑖̂ = (𝑅∇)̂𝑖 ∈ End𝛺•(𝔤)(𝛺•(𝔤, 𝐸)).                       (19) 

Then, by 

[𝑑∇, 𝐾̂] : = 𝑑∇ ∘ 𝐾̂ − (−1)𝑘𝐾̂ ∘ 𝑑∇ = 𝑑∇End𝐾̂.                  (20) 

We have: 

𝑑∇End𝑅∇
𝑖̂ = [𝑑∇, 𝑅∇

𝑖 ] = [𝑑∇, (𝑅∇)̂𝑖] = [𝑑∇, 𝑑∇
2𝑖] = 0                 (21) 

Therefore, with 

𝑑
𝐴(fr(𝑅∇

𝑖 ))
= tr̂(𝑑∇End𝑅∇

𝑖 ) = 0.                         (22) 

tr̂(𝑅∇
𝑖 ) Defines (𝑎 cohomology class) in 𝐻2𝑖(𝔤) 

Definition 3.4. Let. 𝐸 Be a vector bundle over 𝑀 and let 𝑔 → 𝑀 Bea 𝐿∞ -algebroid.  

The 𝑔-Pontryagin characters of. 𝐸  Are defined for anylinear 𝑔  -connection ∇ on 𝐸  .The 

cohomology classes 𝜎𝔤
𝑖(𝐸): = [tr̂(𝑅∇

𝑖 )] ∈ 𝐻2𝑖(𝔤), for 𝑖 ≥ 1. 

The 𝑔-Pontryagin algebra of 𝐸 is the ℝ -subalgebra Pont𝔤
•(𝐸) ⊆ 𝐻•(𝑔) generated by the𝑔 -

Pontryagin characters. 

Definition 3.5. The (characteristic polynomial) is defined as 

                          (23) 

For 𝑖 a positive integer which is the homogeneous polynomials 𝑓𝑖 of degree 𝑖 on gl(𝑘, ℝ) for 

𝑘 ≥ 𝑖 ≥ 0 

Definition 3.6. Since these characteristic polynomials are obviously Gl(𝑘, ℝ) -invariant, for each 

𝑖 ≥ 1 we define the 𝑖 -th 𝑔 -Pontryagin class of 𝐸 as: 

                        (24) 

For any choice of connection ∇ : 𝛤(𝑔) × 𝛤(𝐸) → 𝛤(𝐸) .The 𝑔 -Pontryagin classes of 𝐸 

generate together Pont𝔤
•(𝐸) . The total 9 -Pontryagin class of 𝐸 is defined by 
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      (25) 

3.3. Bott connection on singular foliations.  

Bott connection offers a way of differentiation along the leaves of a foliation, which is significant 

in helping grasp the cohomological and homotopical properties of foliations via the characteristic 

classes. 

Definition 3.7.For the 𝐶∞(𝑀)  -module 𝒩 = 𝒳(𝑀)/ℱ̂  ,the Lie bracket of vector fields 

descends to a map ℱ̂ × 𝑁 → 𝑁  .After fixing a leaf 𝐿  ,let us consider the Lie algebroid 𝐴𝐿 →

𝐿 ,whose sections are given by ℱ𝑏/ℐ𝐿ℱ𝑏 .Let us also consider the normal bundle 𝑁𝐿 =
𝑇𝐼𝑀

𝑇𝐿
→ 𝐿, 

whose space of sections is 𝒩/ℐ𝐿𝒩. 

The Bott connection on 𝑁𝐿 is induced by the Lie bracket as follows: 

∇𝐿,⊥: 𝐶∞(𝐿; 𝐴𝐿) × 𝐶∞(𝐿; 𝑁𝐿) → 𝐶∞(𝐿; 𝑁𝐿), ∇⟨𝑋⟩
𝐿,⊥⟨𝑌⟩ = ⟨[𝑋, 𝑌]⟩.           (26) 

The map ∇𝐿,⊥ is a flat Lie algebroid connection, i.e., a Lie algebroid representation of 𝐴𝐿 on 

𝑁𝐿 .This thus can be considered the same as a Lie algebroid morphism 

∇𝐿,⊥: 𝐴𝐿 → Der(𝑁𝐿).                             (27) 

Where Der(𝑁𝐿) is the Lie algebroid over 𝐿 whose sections are given by CDO(𝑁𝐿) i.e., the first 

order differential operators 𝐷: 𝐶∞(𝐿; 𝑁𝐿) → 𝐶∞(𝐿; 𝑁𝐿) such that there exists a vector field 𝜎𝐷 ∈
𝔛(𝑀) with 𝐷(𝑓𝑋) = 𝑓𝐷(𝑋) + 𝜎𝐷(𝑋)(𝑓)𝑋 

4. Baum-bott theorem for smooth singular foliations 

Baum and Bott made significant strides in the study of singularities in the context of holomorphic 

vector fields on complex manifolds [9]. They pioneered the study of residues of singularities of 

holomorphic foliations, a crucial aspect in understanding the. Underlying topology and geometry of 

the foliation. However, their work was primarily focused on the case where the dimension of the 

connected components of the singular set was equal to (𝑟 − 1), where r is the dimension of the leaves 

of the foliation. 

Lazarov and Pasternack [21] extended Baum and Bott’s work [3] and explored the residues of 

singularities of a Riemannian foliation defined on a Euclidean space.They considered a more specific 

setting, with only a single singularity at the origin.Their work contributed to our understanding of 

how singularities can shape the global properties of a foliation. 

Furthering this line of research, S. Nishikawa [24] generalized Lazarov and Pasternack’s findings 

to projective foliations, thereby expanding the scope of the study to a more general and abstract setting. 

However, like Baum and Bott, Nishikawa’s study also imposed a restriction on the dimension of the 

singularset of the foliation. 

Our work aims to continue this trajectory by considering general singular foliations on smooth 

manifolds and providing an explicit formula for the residues of the connected components of the 

singular set, without imposing any restrictions on its dimension.The crux of our approach lies in 

reducing the problem of computing the residues of the singular set of the foliation to the problem of 

computing the residues of a zero set of a vector fieldon 𝑀 .To achieve this,we leverage the method 

of transgression,a powerful technique in differential geometry due to Chern and Weil.This approach 

allows us to bypass the limitations of previous studies and provides a more general framework for 

studying the residues of singularities in Riemannian foliations. 

4.1.  Bott Vanishing theorem. 

Definition 4.1. A basic connection ∇ on 𝑁𝐹 is one such that 
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 ∇𝑋(𝑍) = 𝜋[𝑋, 𝑍̃],                             (28) 

For all 𝑋 ∈ 𝛤(𝐸) where Z̃ ∈ 𝒳 is such that 𝜋(Z̃) = 𝑍 

Lemma 4.2. Under the assumption that 𝐸 is integrable, there exists a basic connection on NF. 

Lemma 4.3. Let 𝛻 Bea basic connection on NF, and 𝑘 the curvature of 𝛻.Then 𝑘(𝑋, 𝑋′) = 0 

for all X, 𝑋′ ∈ 𝛤(𝐸). 

Proof. Let 𝑍 ∈ 𝛤(𝑁𝐹) and 𝑍̃ ∈ 𝒳 with 𝜋(𝑍̃) = ℤ .Then 

                   (29) 

But we can choose 

𝜋[𝑋, 𝑍̃] = [𝑋, 𝑍],

𝜋[𝑋′, 𝑍̃] = [𝑋′, 𝑍],
                             (30) 

SO 

𝑘(𝑋, 𝑋′)(𝑍) = 𝜋 [𝑋, [𝑋′, 𝑍̃]] − 𝜋 [𝑋′, [𝑋, 𝑍̃]] − 𝜋 [[𝑋, 𝑋′], 𝑍̃] = 𝜋(0) = 0        (31) 

By the Jacobi identity. 

Lemma 4.4. Let 𝑈𝛼 ⊂ 𝑀 be a simultaneously trivializing neighborhood for NF and 𝐸 , 𝜎𝛼 a 

smooth frame for NF over  𝑈𝔞 . Let 𝐼𝛼(𝐸) be the ideal in 𝐴∗(𝑈𝛼) generated by those 1-forms which 

vanish on  𝛤(𝐸|𝑈𝛼
) . Let 𝑘𝑢  be the curvature matrix associated to the frame 𝑈𝛼  by a basic 

connection. Then each 𝑘𝑖𝑗
𝛼 ∈ 𝐼𝛼(𝐸). 

Proof. Over 𝑈𝛼  𝐸  can be described as the set of tangent vectors on which certain 1-forms 

𝜃1, … , 𝜃𝑞 vanish, these 1-forms being linearly independent at each point of 𝑈𝛼 .In particular, 𝐼𝛼̃(𝐸) 

is generated by 𝜃1, … , 𝜃𝑞 .Complete these to a basis of 1-forms by 𝜃𝑞+1, … , 𝜃𝑛 these last restrict to 

a basis of 𝐸𝑝′
∗ , ∀𝑝 ∈ 𝑈𝛼 . Consider a nontrivial form 

                           (32) 

Clearly, there are 𝑋, 𝑋′ ∈ 𝛤(𝐸|𝑈𝛼
) such that 

𝜔(𝑋, 𝑋′) ≠ 0.                               (33) 

By Lemma (6.3), it follows that each 𝑘𝑖𝑗
𝛼 ∈ 𝐼𝛼(𝐸). 

Theorem I (Bott Vanishing Theorem [11]). If 𝐸 ⊂ 𝑇𝑀 is integrable and if the quotient bundle 

𝑁𝐹 = 𝑇𝑀/𝐸 has fiber dimension. 𝑈 , then 𝑃𝑜𝑛𝑡• (𝑁𝐹) = 0 for 𝑘 > 2𝑞. 

This is really a global integrability condition. Indeed, for any 𝑛-dimensional bundle, set 

𝑝(𝐸) = 1 + 𝑝1(𝐸) + ⋯ + 𝑝⌊𝑛/2⌋(𝐸).                      (34) 

Because the leading term is 1, this is an invertible element of the ring 𝐻•(𝑋; ℝ) of formal infinite 

series  𝑎0 + 𝑎1 + ⋯ + 𝑎𝑟 + ⋯  , 𝑎𝑖 ∈ 𝐻𝑖(𝑋; ℝ) .If 𝐸′ ⊂ 𝐸  is a subbundle, the basic “duality” 

formula holds: 

𝑝(𝐸/𝐸′) = 𝑝(𝐸′)−1𝑝(𝐸),                           (35) 

And shows that thePontryagin classes of 𝐸/𝐸′ depend only on theisomorphism classes of 𝐸 and 

𝐸′ and not on the embedding 𝐸′ ⊂ 𝐸 . Thus, we can reformulate(∗) as follows. 

Theorem II (Bott vanishing theorem version II [11]). If 𝐸 ⊂ 𝑇𝑀  is a subbundle which is 

isomorphic to an integrable subbundle 𝐸′ ⊂ 𝑇𝑀 and if 𝑁𝐹 = 𝑇𝑀/𝐸,𝑞 = 𝑑𝑖𝑚(𝑁𝐹) then 𝑃𝑜𝑛𝑡• 

(NF) = 0  𝑓𝑜𝑟 𝑘 > 2𝑞  
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4.2. Bott Vanishing Theorem on Lie Algebroids. 

A direct generalization of Bott Vanishing theorem is to generalize Pontryagin classes of the normal 

bundle to an involutive subbundle of the tangent bundle to the case of normal bundle (or 

representation).Since the core object is aflat 𝐹 -basic connection on a smooth vector bundle 𝑇𝑀/𝐹 , 

that can be extended to alinear 𝑇𝑀 -connection to define Pontryagin characters or classes, one can 

easily prove a similar result for the existence of a flat partial connection on a smooth vec tor 

bundle.Furthermore,the construction is adapted to the more general 𝐴 -Pontryagin (where 𝐴 is a 

Lie algebroid over 𝑀 ) classes of a vector bundle 𝐸. 

Let 𝐴 be a Lie algebroid over a smooth manifold 𝑀 ,and let 𝐵 be a subalgebroid of 𝐴 over 

𝑀 .Let n be the rank of 𝐴 ,and 𝑙 be the rank of 𝐵 .Set 𝑞 : = 𝑛 − 𝑙, the rank of 𝐴/𝐵 i.e.,the 

codimension of 𝐵 ,or the annihilator 𝐵∘ of 𝐵 .Let 𝐸 be a smoothvectorbundle over 𝑀 ,with a 

flat 𝐵  -connection ∇  .It is not difficult to see that ∇  can be extended to an 𝐴  -connection 

∇‾ : 𝛤(𝐴) × 𝛤(𝐸) → 𝛤(𝐸) , satisfying  

∇̃be = ∇b                                 (36) 

For all 𝑏 ∈ 𝛤(𝐵) and 𝑒 ∈ 𝛤(𝐸). 
Define the space 𝐼•(𝐵) ⊂ 𝛺•(𝐴) as the ideal in 𝛺•(𝐴) generated by the 1-forms vanishing on 

𝐵 .That is, it is generated by the sections of the annihilator 𝐵∘ ⊂ 𝐴∗ of 𝐵. It is explicitly given by 

𝐼0(𝐵) = {0} ⊂ 𝛺0(𝐴) = 𝐶∞(𝑀) and 

Ir(B) = ω ∈ Ωr(A) ∣ ω(b1, … , br) = 0 for all b1, … , br ∈ Γ(B)            (37) 

For 𝑟 ≥ 1 

Choose an open set 𝑈 ⊂ 𝑀 trivializing 𝐴 and 𝐵 .That is,there is a smooth frame (𝑎1,…,𝑎𝑛
) for 

𝐴 over 𝑈𝐼 such that (𝑎𝑞+1, … , 𝑎𝑛) is a smooth frame for 𝐵 .Consider the dual frame (𝛼1, … , 𝛼𝑛) 

of 𝐴∗  over 𝑈  . By construction, (𝛼1, … , 𝛼𝑞) is a smooth frame for 𝐵∘  over 𝑈  .Since 𝐼•(𝐵) 

isgenerated as an ideal by 𝛤(𝐵∘) for 𝑟 ≥ 1 , an element 𝑈𝑈 of 𝐼𝑟(𝑈) canbe written as? 

                                (38) 

With 𝜔𝑖 ∈ 𝛺𝑈
𝑟−1(𝐴) . Therefore, since 𝐵∘ has rank 𝑈 , the wedge product 

(𝐼•(𝐵))
𝑞+1

= 𝐼•(𝐵) ∧ ⋯ ∧ 𝐼•(𝐵) (q+1 times)                 (39) 

Must necessarily vanish. It is now easy to see that 

𝑅∇‾ (𝑏, 𝑏′)𝑒 = 𝑅∇(𝑏, 𝑏′)𝑒 = 0                         (40) 

For 𝑏, 𝑏′ ∈ 𝛤(𝐵)  and all 𝑒 ∈ 𝛤(𝐸)  ,and so 𝑅∇‾ ∈ 𝐼2(𝐵) ⊗𝒞∞(𝑀) 𝛤( End (𝐸)).  This implies 

𝑅∇‾
𝑖 ∈ (𝐼2(𝐵))

𝑖
⊗𝒞∞(𝑀) 𝛤(End(𝐸)). and so 𝑅∇‾

𝑖 = 0 for 𝑖 > 𝑞  .More generally, for a 𝐺𝐿(𝑘, ℝ) 

invariant polynomial of degree 𝑑 on 𝔤[(𝑘, ℝ) ,the 2𝑑 -form 𝑃(𝑅∇‾ ) ∈ 𝛺2𝑑(𝐴) is an element of 

(𝐼2(𝐵))
𝑑

 ,and so 𝑃(𝑅∇‾ ) = 0 for 𝑑 > 𝑞 

As a summary, this section has proved the following result. 

Theorem III (Bott Vanishing Theorem for Lie algebroids [17]). Let 𝐸 be a smooth vector bundle 

over a smooth manifold 𝑀 andlet 𝐴 be a Lie algebroid over 𝑀 .If there existsa Lie subalgebroid 

B of 𝐴 of codimension 𝑞 with a linear partial representation 𝛻: 𝛤(𝐵) × 𝛤(𝐸) → 𝛤(𝐸) , then the 

Pontryagin algebra 

Pont𝐴
• (𝐸) ⊂ 𝐻•(𝐴)                             (41) 

Are all trivial for 𝑙 > 2𝑞 
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Remark 5.5. Given an ordinary linear connection 𝛻: 𝔛(𝑀) × 𝛤(𝐸) → 𝛤(𝐸) on a vector bundle 

𝐸 of rank 𝑘′ a Lie algebroid 𝐴 → 𝑀 defines a linear 𝐴 -connection 𝛻𝐴: 𝛤(𝐴) × 𝛤(𝐸) → 𝛤(𝐸) 

by 

∇𝑎
𝐴𝑒 = ∇𝜌(𝑎)𝑒.                               (42) 

It is easy to see that 

[𝑝(𝑅∇𝐴)] = 𝜌⋆[𝑝(𝑅∇)] ∈ 𝐻•(𝐴)                        (43) 

For any GL(𝑘, ℝ) -invariant polynomial 𝑝 on 𝑔𝑙(𝑘, ℝ) .Here, 𝜌⋆ is the cochain map 

𝜌⋆: (𝛺•(𝑀), 𝑑) → (𝛺•(𝐴), 𝑑𝐴),                       (44) 

Defined by 

𝜌⋆(𝜔)(𝑎1, … , 𝑎𝑠) = 𝜔(𝜌(𝑎1), … , 𝜌(𝑎𝑠)) for 𝜔 ∈ 𝛺𝑠(𝑀) a          (45) 

As observed by Fernandes in [15], these yields 

Pont𝐴
• (𝐸) = 𝜌⋆(Pont•(𝐸))                         (46) 

Or more precisely 

 cw𝐴(𝐸) = 𝜌⋆ ∘ cw(𝐸).                           (47) 

Therefore, it is not hard to show the following obstruction result in terms of the classical 

Pontryagin algebra of 𝐸. 

Corollary 3.2. Let 𝐸 be a smooth vectorbundle over a smooth manifold, 𝑀 and let 𝐴 be a Lie 

algebroid over  𝑀  . If there exists a Lie subalgebroid 𝐵  of 𝐴 of codimension 𝑞  with a linear 

representation ∇: 𝛤(𝐵) × 𝛤(𝐸) → 𝛤(𝐸) , then the Pontryagin algebra 

 Pont•(𝐸) ⊂ 𝐻•(𝑀)                            (48) 

All lie in the kernel of 𝜌∗: 𝐻•(𝑀) → 𝐻•(𝐴) for 𝑙 > 2𝑞  

If a Lie algebroid 𝐴 has a subalgebroid 𝐵 of codimension 𝑞, then 𝐵 is represented on 𝐴/𝐵 via 

the flat Bott connection 

 ∇𝐵: 𝛤(𝐵) × 𝛤(𝐴/𝐵) → 𝛤(𝐴/𝐵), ∇𝑏
𝐵𝑎‾ = [𝑏, 𝑎].              (49) 

Hence, Pont𝐴
• (𝐴/𝐵)  ⊂ 𝐻•(𝐴) is trivial for 𝑙 > 2𝑞 . This yields obstructions to a subalgebroid 

structure on 𝐵 ⊂ 𝐴 of codimension 𝑞. 

However, in the case 𝐴 = 𝑇𝑀  and 𝐵 = 𝐹𝑀  the algebroid 𝐹𝑀  is in fact more than just a 

subalgebroid, which implies the classical Bott Vanishing theorem. 

In this section, we consider a singular foliation ℱ which has a resolution by vector bundles, and 

𝒢 ⊂ ℱ being a sub-foliation. It’s natural to ask whether the Bott vanishing theorem is valid in this 

setting 

Proof. 

4.3. Residue existence theorem for singular foliations. 

Let ℱ be a singular foliation which admits its resolution 

 0 → 𝛤(𝐸−𝑛) → 𝛤(𝐸−𝑛+1) → ⋯ → 𝛤(𝐸−1) → 𝛤(𝐸0) → ℱ →            (50) 

And 𝑔 is the universal 𝐿∞ -algebroid over 𝐴 associated with the complex of vector bundles. 

By assumption, 𝐹 is a perfect complex over 𝒞∞(𝑀), this implies that the normal module of ℱ, i.e., 

ℱ⊥ is also aperfect complex, which admits anatural resolution since 

 0 → 𝛤(𝐸−𝑛) → 𝛤(𝐸−𝑛+1) → ⋯ → 𝛤(𝐸−1) → 𝛤(𝐸0) → 𝑇𝑀 → ℱ⊥ → 0,       (51) 

Is exact. In other words, we define NF to be the complex 



Highlights in Science, Engineering and Technology IFMPT 2025 

Volume 128 (2025)  

 

121 

0 → 𝛤(𝐸−𝑛) → 𝛤(𝐸−𝑛+1) → ⋯ → 𝛤(𝐸−1) → 𝛤(𝐸0) → 𝑇𝑀 → 0,           (52) 

Which is quasi-isomorphic to ℱ⊥ . Therefore, we can regard ℱ is a subalgebroid of a tangent 

module 𝑇𝑀  as and 𝐿∞  -algebroid, i.e., (𝑇𝑀, 𝔤) is an 𝐿∞  -pair. Note that, we have the quasi-

isomorphism 𝑇𝑀 ≃ 𝐸• ⊕ 𝑁𝐹• .Using the 𝐿∞ -structure on ℱwe can build partial ℤ -connection 

over the foliation dga 𝐴. 
Proposition 4.6. [BZ] There exists a Bott ℤ -connection 𝔼 over the foliation dga 𝐴 associated 

to ℱ: 

  𝔼: 𝐸• ⊗𝐴 𝐴• → 𝐸• ⊗𝐴 𝐴•                          (53) 

Where 𝐴 = 𝐴• is the foliation dga 

NF.Note that using Prop 16.3 in [29] and Lemma 6.19 in [25], this is equivalent to the case that 

𝐸 ⊕ 𝑁𝐹 carries an 𝐿∞-structure, where the brackets vanish with more than one inputs from NF.  

This Bott connection naturally lifts to a full ℤ over the de Rham dga 𝛺•(𝑀) ,sincelocally ℱ is 

a submersion, and then we can always lift a local section s of ℱ to a local section 𝑆̃ of 𝑇𝑀 with 

𝜋(𝑠̃) = 𝑠 .Equivalently, we want to lift the output of all brackets with more than one inputs from NF. 

Lemma 4.7. There exists a lift of E to a ℤ -connection 𝔼 over the de Rham dga, i.e., we can lift 

the 𝐿∞-algebroid structure on  𝔼 to an 𝐿∞-algebroid on  E ⊕ 𝑁𝐹 

Also notice that 𝐸 ⊕ 𝑁𝐹 ≃ 𝑇𝑀, where the quasi-equivalence is induced by the natural map 

                            (54) 

Let 𝔼 denote the Bott ℤ -connection. Now we have lifted the cohesive module NF with a Bott 

𝑍𝐿 -connection on over the foliation dga 𝐴 = Sym𝔤∨[−1] to a full ℤ-connection over the de Rham 

dga 𝛺• to 𝑇𝑀 as (𝑇𝑀, 𝔼̃) . We consider the characteristic classes computed from 𝔼̃. 

Let 𝑆 =∪ 𝑆𝑖 be a finite union of singular sets, where each 𝑆𝑖 is compactly supported. 

Theorem IV (Bott Vanishing Theorem for singular foliations). The pontryagin classes of the 

normal module ℱ⊥ ,vanishes on M| M𝑀|𝑀\𝑁 𝑀|𝑀\𝑁𝑓𝑜𝑟 Pont𝑙 = 0 for 𝑙 > 2𝑞, = 0 =01 >2q 𝑙 >

2𝑞. where 𝑁 =∪𝑖 𝑁𝑖 and each 𝑁𝑖 is an arbitrarily small open neighborhood of. 𝑆𝑖, and 𝑞 is the 

codimension of theregular leaves. 

Proof. Note that on 𝑀\𝑁, the anchor map 𝜇 has constant rank and ℱ|𝑀\𝑁  regular foliation, 

which implies that the linear part of 𝑔 is quasi-isomorphic to a single term complex 𝐸0, which is 

then isomorphic to the vector bundle underlying ℱon 𝑀\𝑁 . Now NF |𝑀\𝑁 is quasi-isomorphic to 

𝛤(𝐸0) → 𝑇𝑀, i.e. 𝐸𝑖 = 0, 𝑖 ≥ 0 .As a result, all components of E vanish except 

 𝛤(𝐸0) → 𝛤(𝐸0) ⊗ 𝛺1(𝑀).                         (55) 

Now, by the Bott Vanishing Theorem for Lie algebroid (Theorem III), regarding 𝛤(𝐸0) ∣𝑀\𝑁 as 

a subalgebroid of 𝑇𝑀 ∣𝑀\𝑁,Pont𝑙(𝑁𝐹) ∣𝑀\𝑁= 0 for 𝑙 > 2𝑞. 

Therefore, the Pontryagin class is contained in 𝑆 , which means it is only non-zero in 𝑆 the 

singular sets, which is the residue. 

Definition 4.8. Let the singular sets be 𝑆 =∪ 𝑆𝑖, where each 𝑆𝑖 is a connected component which 

is compact supported. The residue Res𝑝(ℱ, 𝑆𝑖) is defined as follows: 

(1) A ℤ -connection 𝐼𝐸 on NF associated with ℱ over 𝑀  

(2) An open 𝜀  -neighborhood 𝑁  of 𝑆𝑖  whose closure is compacted supported, where 𝜀 an 

arbitrarily small real number is. 

Note that given a ℤ -connection, any closed differential form. 𝛼𝑖(𝔼) which represents. 𝑝𝑗(𝑁𝐹). 

is a globally well-defined form. The residue at 𝑆𝑖 is thus defined as 

 Res𝑝(ℱ, 𝑥) = ∫ 𝜙
𝑀

(𝛼1(𝔼), … , 𝛼𝑘−1(𝔼)) ∈ ℝ                (56) 
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Where the polynomial 𝜙(𝛼1, … , 𝛼𝑘−1) vanishes outside N. 

Residue Existence Theorem for singular foliations. With the well-defined residue, we note that the 

construction pulls back to 𝑈′  under the diffeomorphism  𝑓: 𝑈′ → 𝑈  , and that changing the 

orientation of 𝑀 barely changes the sign of the integral.  

Let 𝑀  be compact. Let 𝔼  be a Bott ℤ  -connection on 𝑁𝐹  over 𝑀  .Let 𝑁𝑖  be the 

𝐞 neighborhood for each 𝑆𝑖 ∈ 𝑆 be 𝑊𝑖 of such that 𝑁𝑖 ’s has pairwise disjoint closures. Let 𝛼𝑗(𝔼) 

be a form representing 𝑝𝑖(𝔼)  .Note that, from observation in Theorem IV, 𝛼𝑗(𝔼)  reduces to 

𝛼𝑗(∇) ∈ 𝛺4𝑗(𝑀) on 𝑁𝑂 where ∇ is the regular connection component of 𝔼 where𝑁𝑂 = 𝑀\⋃𝑖𝑁𝑖. 

From transgression formula in 4.3, we know that 𝛼𝑗(𝔼) is closed, and is in 𝐻4𝑗(𝑁𝐹 ⊕ 𝔤) Since 

we have the quasi-isomorphism ℱ⊥ ∼ 𝑁𝐹 = 𝑁𝐹 → 𝑇𝑀  and 𝑇𝑀 ≃ 𝑁𝐹 ⊕ 𝔤 where 𝑔 ≅ ℱ .𝛼𝑗(𝔼) 

Is equivalent to a form in 𝐻4𝑗(𝑇𝑀) = 𝐻4𝑗(𝑀) i.e. 𝛼𝑗(𝔼) represents the Pontryagin class 𝑝𝑗(𝑀) ∈ 

𝐻4𝑗(𝑀).Therefore, we can finally complete the proof of the Residue Existence Theorem for Singular 

Foliations: 

                (57) 

5. Conclusion 

In conclusion, we extend the classical Bott Vanishing Theorem using the higher categorical and 

homotopical tools including 𝐿∞-algebroids and cohesive modules to explore the Pontryagin classes 

on singular foliations. Our key findings include the demonstration of the conditions of vanishing and 

the applications of the residue theorem to foliations with singularities, which helps pave the way for 

future study of the characteristic classes on more general types of singular foliations on smooth 

manifolds. This is also an effort to translate the methods and toolsfrom algebraic geometry and 

complexgeometry to 𝐶∞ geometry, which is intrinsically much more difficult than the previous two. 

In the future, wecould also investigate an infinitesimal formula to calculate the residue and then 

generalize it to the case of singularities with even fewer restrictions. 
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