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Abstract. The algebraic system of groups has become the focus of modern algebra courses
because it is an important tool for studying symmetry problems. However, it is difficult for students
to understand groups because it is difficult for them to understand how it can be used as a tool to
study symmetry problems. In this article, the author presents a series of proofs, importance, and
examples of the definition of orbits and stabilizer, the proof of useful claim, and the definition of orbits
and stabilizer as an important part of swarm action. The characteristics of its derivative theorem
orbits-stabilizers theorem are analyzed. Besides, the article also includes the application of Orbits-
Stabilizer theorem to the Cauchy's Theorem, Lagrange's Theorem and Burnside's Lemma theorem
by giving several definition, examples, and proof. Finally, this paper not only reviews the previous
understanding and summary of the role of groups, but also contains the author's prospects for orbits
and stabilizers in other fields.
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1. Introduction

In mathematical group theory, group action is a crucial concept, through which the symmetry of
groups and their relationship with sets can be revealed. In this research area, orbits and stabilizer are
the core concepts that provide an effective way to understand group structure. An orbit describes the
trajectories of elements in a set under the action of a group, while a stabilizer depicts a group of
elements that keep a particular element unchanged. Orbits and stabilizers not only occupy an
important place in the study of pure mathematics but are also widely used as tools in other fields of
mathematics, such as algebraic geometry and number theory.

In recent years, with the deepening of research, the application of ORBITS and stabilizer in many
emerging fields has been further developed. For example, orbits-stabilizers theorem is used in
combinatorial mathematics to calculate the number of invariant objects, which is especially important
for solving symmetry problems. In addition, the application of orbits and stabilizers in representation
theory, coding theory, and mathematical physics has also shown remarkable results. Besides, except
that the direction in future is also various. One of them is on extending the concept of orbits and
stabilizers to advanced algebraic structures field. This direction can lead to deeper insights into the
classification of symmetries in algebraic varieties and geometric objects. Such that is an example
focuses on nilpotent orbits in Lie algebras and their connection to representation theory and stabilizers
[1].

The latest research literature further demonstrates the importance of ORBITS and Stabilizer in
group action. For example, Cohen and Riche explore orbital categories and their application to
algebraic geometry in their paper [2]. Guralnick and Kantor investigated the problem of probabilistic
generation of finite mono-groups, in which the analysis of orbits and stabilizer played a key role in
understanding the distribution of generators [3]. Burness and Harper's study focused on the orbital
structure of the original displacement group and delved into the nature and application of stabilizer
in this context [4].

Thus, it can be seen that the concepts of orbits and stabilizer not only deepen the understanding
of group structure, but also provide powerful tools for problems in other areas of mathematics. These
research results demonstrate the continued importance and wide application prospects of ORBITS
and stabilizer in mathematical group theory.
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2. Definition of orbit and stabilizer

2.1. Definition

Definition 1 (Orbit). The orbit of a specific element, when a group acts on it, consists of all
possible elements that result from the group’s action to s, formally expressed as G-s = {g - s|g € G}
[5].

Definition 2 (Stabilizer). The set of elements in the group that leave the specific element
unchanged under the group action s under a group action G is the set of group elements that leave
s unchanged under the action, expressed as  Stab;(s) = {g € G|g - s = s} [6].

Definition 3 (orbits- stabilizers theorem). Let G represent a collection of elements and a set, if
for every element g within, associated with a permutation g on the set S is produced, one can say
G exerts an action on S. The conditions are that the identity of is required to a permutation on S that
leaves every element of S unchanged, functioning as the identity, and when two elements g and h are
combined, the resulting permutation =(gh) of Swillbe g - mwh [7].

2.2. Properties about Orbits and Stabilizer and its importance

Here the author discusses the function and nature of orbits from three aspects.

From set of Images to deduce the orbit G (x) consists of all possible outcomes when different
elements of G are applied to x.Beside the orbit can be used to establishes a relation that satisfies the
properties of reflexivity, symmetry and transitivity. Over the set X. Two elements y,x € X are
considered to be equivalent if there exists some g € G such that g(x) = y. This equivalence
relation divides the set X into distinct, non-overlapping subsets. That show the equivalence relation
characteristic. Partition of the Set: In an addition, the set X can be partitioned into disjoint orbits.
Every element within X is contained in a single orbit, indicating that orbits are mutually exclusive and
collectively exhaustive. That is the feature of Partition of the Set. The constant in subgroup
characteristic, connection to symmetry role, in the Orbit-Stabilizer, theorem invariant under
conjugation that four aspects. That is about Properties about stabilizer.

The stabilizer is a subgroup of the original group, adhering to the closure property when
considering the operation of the group and containing the group's identity element. Beside the
elements in the stabilizer represent symmetries of a specific point under the group action, meaning
they leave the point unchanged. On the other hand the stabilizer’s size is inversely related to the size
of the orbit of the point, as described in the theorem that relates the orbit and stabilizer of an element.
Finally, a stabilizer of a point remains invariant under conjugation within the group.

Combined with the above, it can be concluded that Orbit and stabilizer has the following
functions as a mathematical tool. Orbits classify elements of X into disjoint subsets known as orbit
classes. They reveal the structure and symmetry of X under G 's action. Stabilizers reflect the
internal structure of properties of G and are useful for studying subgroups and so, orbits and
stabilizers are fundamental tools in group theory and group actions. It provides a structured way to
analyze symmetries across diverse, mathematical disciplines.

2.3. Proof two claims

Then, there are two useful claims-G, < G and therelation x ~ g(x)Vg € G thisrelation fulfills
the criteria for being classified as an equivalence relation.

Claim 1:G, < G

To show that the stabilizer G is a group, the author needs to verify several group properties.

Proof: it is clear that G, € G, SO WTS G, is a group. Firstly, from closeness aspect to deduce:
ifh,h' € G, ,hh'(x) = h(x) = x so hh’ fixes x then hh' € G.Secondly, from associativity
aspect to see: as G is a group of symmetries (which is itself a group), this means for any h,h’,h" €
G then (hh)h" = h(h'h"), the elements in G,, must be associative. Finally, from the last aspect-
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Inverse to see. Since G, contains all elements that send x to itself, if h € G,So0 is %e G because
% fixes x then %(x) = x and hence(h™1)"1=h isinG.

Recall that the way in which group G operates on a particular set S defines a structure-preserving
map between two algebraic structures of G.to Sym(X) and e in G so is a one that
fixes x (i.e,e(x) = x) .Since e € G must correspond to id € Sym(X) (the larger symmetry
group) That is, e must be an elementin G.

Claim 2: The relation x ~ g(x)V g € G is mapping satisfies the properties necessary to be
considered an equivalence relation.

Proof. A relation is an equivalence, if there exists some g € G for which y = g(x) satisfies the
equivalence properties, the relation x ~y defined by x ~y.The breakdown show from three
aspects.

For any element x € X, one needs to show x ~ x since the identity element e € G satisfies
x = e(x) it follows that x ~ x, proving reflexivity. If there exists g € G then x ~y,y = g(x)
then set t = g~'and the g7t isalso inG t(y) =t((t71(x)) =tt ! (x) =x. Sincet € G,x =
hy),y~x. If x~y~z y=gx) and z =g'(y) = g@gx) = g'gix) As g'g €
G,x ~ z,proving transitivity.

It also can further conclude that G (x) is an equivalence class of x,and X is partitioned by the
orbits of its elements and ~ is an equivalence relation this implies that each element an in Y
belongs to an equivalence class represented by its orbit G (x). The set X is partitioned into disjoint.

2.4. An Example

Consider X = {1,2,3} and the symmetric group G = S5. Consider the elementx = 1 inX,
G = S; can permute 1 tol, 2 and 3, so the orbit ¢ (1) = {1,2,3}, the order3. Notice
that |G(1)| = 3. The stabilizer of 1 under S;consists of all permutations in S; that leave 1 fixed.
It can either swap elements 2 and 3 or leave 2 and 3 fixed. So G; = {id,(23)} anditisa
subgroup of S; with a cardinality of2. Notice that |S;| = 6 = 2x3 because G; =2 |G(1)|,=
3G, X |G(1)| = 6 so it can get the formula |S3|=|G;| X |G(1)|.Connects the order of links the
group with the order of the stabilizer and the size of the orbit.

3. Relation to Other Theorems in Group Theory

There are three parts to find relationship between serial theorems and orbits-stabilizer theorem,
definition, relationship and example.

3.1. Definition

Definition (Cauchy's Theorem). In a finite group G, if its order is divisible by a prime p, there
exists an element in G with order precisely equal to p [8].

Definition (Lagrange's Theorem). In every finite group G, the order of each subgroup H must be
a number that evenly divides the group’s total size of G. [9]

Definition (Burnside's Lemma). The total number of distinct orbits produced by the action of a
finite group S on a set Y equals the average number of elements in Y that remain fixed under the

group action (Number of Orbits= éZses [Y®]) [10].

So, Cauchy's Theorem asserts that within any finite group G, when the order of the group is
divisible by a prime number p, then there exists an elementin G whose order is exactly p. According
to Lagrange's Theorem, in a finite group G, the size of any subgroup H is a divisor of the size of G.
Burnside’s Lemma determines the count of unique orbits formed the operation of a finite group on a
finite set X, by computing the mean number of fixed points for any element of the group.
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3.2. Relationship between the orbit-stabilizer theorem and three theorems

Consider G acting on itself by conjugation. For any element g € G, the orbit of an element as a
result of this action is the set of all conjugates of g. The stabilizer in g corresponds to
centralizer C;(g) of g. According to the theorem that relates the size of the orbit and stabilizer of an
element under a group action, the size of the orbitis [G: C;(g)]. By Cauchy's theorem, if p is a divisor
of |Gl, the group includes an element whose order equals p, there is an element g whose order is p.
This element generates a cyclic subgroup of order p, and the corresponding stabilizer C;(g) has an
index divisible by p, implying the existence of a non-trivial orbit, and hence a non-trivial conjugacy
class.

If G acts transitively on a set X, then the Orbit-Stabilizer Theorem implies that the size of any
orbit equals the index of the stabilizer subgroup. Since the size of the orbit divides | G |, Lagrange's
theorem is satisfied. Specifically, the orbit size | G: G, | is the product of the stabilizer size | G, | and
the number of distinct cosets. By summing up the contributions from the fixed points of each group
element, Burnside’s lemma is a method for calculating the number of distinct orbits in a group action.

3.3. Examples and proof the orbit-stabilizer theorem satisfies in each theorem:

3.3.1. Proof Cauchy's Theorem

Cauchy's Theorem example: Suppose G consists of a limited number of members. And a
prime p is a factor of its order, then G contains an element whose order is exactly p. Consider G acting
through conjugation, the group acts on itself. For g € G, the orbit of g under this action is the
conjugacy class of g, denoted as Orb(g) = {xgx — 1 | x € G}.

The stabilizer of g for this action corresponds to the centralizer CG(g), consisting of all elements
in G that commute with g. According to the Orbit-Stabilizer Theorem, the size of g's orbit under this

action is given by |0rb(g)| = |C|G(lz)|’ then since p divides | G |, consider the action on conjugacy
G

classes where the centralizer's size | C;(g) | might not be divisible by p. This means the orbit size |
Orb(g) | is divisible by p, implying the existence of a non-trivial conjugacy class whose size is a
multiple of p, and thus there is a corresponding element whose order is p.

For the group G = S;(with 3 order), the order of S5 is 6. Consider p = 2, and S5 has elements
of order 2: (12), (13) and (23). the centralizer of (12) is the subgroup {(1), (12)},s0 | C;(12) |=
2. the orbit of (12) under conjugation is of size 6 + 2 = 3. This confirms the existence of a non-
trivial conjugacy class, showing that S5 has elements of order 2.it is same with Cauchy’s theorem.

3.3.2. Proof Lagrange's Theorem

Suppose G operates on the set X where | X |= n and the action is transitive. For any x € X, the
size of the orbit G -x is| G:G, |, where G,is the stabilizer of x in G By the Orbit-Stabilizer
Theorem | G |=] G - x |X| G, | where | G -x | is the orbit size and | G, | is the stabilizer size.
Both of these sizes divide | G |, confirming Lagrange’s theorem.

For the group G =Z, (order 4), G acts on itself by addition. The stabilizer of any
element x (say x = 1) under this action is trivial, so G, = {0} and | G, |= 1. The orbit of 1 is the
entire group {0,1,2,3}, so the orbit size is 4. Then, by Orbit-Stabilizer Theorem, | G |=| G - 1 |X|
G1 |=4 x 1 = 4. The size of the orbit divides | G |, satisfy the Lagrange’s theorem.

3.3.3. Proof Burnside's Lemma

When the group G interacts with the set X, the total number of unique orbits is given by the fact
that Number of Orbits= ﬁzgeg |X9]|, where | X9 | isthe number of elementsin X fixed by g. For
any x € X,| X9 | is related to the stabilizer G,, and the theorem that connects the size of the orbit

with the stabilizer of an element under group action show the size of each orbit. It can use to count
the count of distinct orbits.

For the group G=Z, acting on the vertices of a square, the count of distinct orbits= ﬁzgea |X9].
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The action swaps two vertices at a time. Consider the group action on the vertices V =
{A, B, C, D} of the square. The stabilizer of any vertex under rotation by 180° isG, = {e}, S0 | G4 |
= 1. the total number of orbits resulting from the group action is that Number of Orbits=

ﬁzgea |X9]. So, 2 distinct orbits under this group action.

4. Conclusion

To summarize, this paper discusses the definitions, functions, properties, and claims of the orbit
and stabilizer in group actions, as well as the Orbit-Stabilizer Theorem in mathematical group theory.
The author also provides the proofs of these theorems. Examples are given to illustrate the order of
the stabilizer and the size of the orbit. Finally, the paper explores the relationship between the Orbit-
Stabilizer Theorem and three theorems—Cauchy's Theorem, Lagrange's Theorem, and Burnside's
Lemma. The paper concludes that orbit and stabilizer are fundamental and foundational concepts in
group theory. While the discussion extends from these basic concepts to explore their connections
with other theorems, it does not integrate a wide range of examples. In future research can focus on
extending the concept of orbits and stabilizers to advanced algebraic structures like Lie groups,
algebraic groups, and topological groups. These extensions can reveal new mathematical properties
and potential applications in physics, particularly in areas like quantum mechanics.
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