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Abstract. The algebraic system of groups has become the focus of modern algebra courses 
because it is an important tool for studying symmetry problems. However, it is difficult for students 
to understand groups because it is difficult for them to understand how it can be used as a tool to 
study symmetry problems. In this article, the author presents a series of proofs, importance, and 
examples of the definition of orbits and stabilizer, the proof of useful claim, and the definition of orbits 
and stabilizer as an important part of swarm action. The characteristics of its derivative theorem 
orbits-stabilizers theorem are analyzed. Besides, the article also includes the application of Orbits-
Stabilizer theorem to the Cauchy's Theorem, Lagrange's Theorem and Burnside's Lemma theorem 
by giving several definition, examples, and proof. Finally, this paper not only reviews the previous 
understanding and summary of the role of groups, but also contains the author's prospects for orbits 
and stabilizers in other fields. 
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1. Introduction 

In mathematical group theory, group action is a crucial concept, through which the symmetry of 

groups and their relationship with sets can be revealed. In this research area, orbits and stabilizer are 

the core concepts that provide an effective way to understand group structure. An orbit describes the 

trajectories of elements in a set under the action of a group, while a stabilizer depicts a group of 

elements that keep a particular element unchanged. Orbits and stabilizers not only occupy an 

important place in the study of pure mathematics but are also widely used as tools in other fields of 

mathematics, such as algebraic geometry and number theory. 

In recent years, with the deepening of research, the application of ORBITS and stabilizer in many 

emerging fields has been further developed. For example, orbits-stabilizers theorem is used in 

combinatorial mathematics to calculate the number of invariant objects, which is especially important 

for solving symmetry problems. In addition, the application of orbits and stabilizers in representation 

theory, coding theory, and mathematical physics has also shown remarkable results. Besides, except 

that the direction in future is also various. One of them is on extending the concept of orbits and 

stabilizers to advanced algebraic structures field. This direction can lead to deeper insights into the 

classification of symmetries in algebraic varieties and geometric objects. Such that is an example 

focuses on nilpotent orbits in Lie algebras and their connection to representation theory and stabilizers 

[1]. 

The latest research literature further demonstrates the importance of ORBITS and Stabilizer in 

group action. For example, Cohen and Riche explore orbital categories and their application to 

algebraic geometry in their paper [2]. Guralnick and Kantor investigated the problem of probabilistic 

generation of finite mono-groups, in which the analysis of orbits and stabilizer played a key role in 

understanding the distribution of generators [3]. Burness and Harper's study focused on the orbital 

structure of the original displacement group and delved into the nature and application of stabilizer 

in this context [4]. 

Thus, it can be seen that the concepts of orbits and stabilizer not only deepen the understanding 

of group structure, but also provide powerful tools for problems in other areas of mathematics. These 

research results demonstrate the continued importance and wide application prospects of ORBITS 

and stabilizer in mathematical group theory. 
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2. Definition of orbit and stabilizer 

2.1. Definition 

Definition 1 (Orbit). The orbit of a specific element, when a group acts on it, consists of all 

possible elements that result from the group’s action to s, formally expressed as G ∙ s = {g ∙ s|g ∈ G} 

[5]. 

Definition 2 (Stabilizer). The set of elements in the group that leave the specific element 

unchanged under the group action s under a group action G is the set of group elements that leave 

s unchanged under the action, expressed as   𝑆𝑡𝑎𝑏𝐺(𝑠) = {𝑔 ∈ 𝐺|𝑔 ∙ 𝑠 = 𝑠} [6]. 

Definition 3 (orbits- stabilizers theorem). Let G represent a collection of elements and a set, if 

for every element g within, associated with a permutation 𝜋𝑔 on the set S is produced, one can say 

G exerts an action on S. The conditions are that the identity of is required to a permutation on S that 

leaves every element of S unchanged, functioning as the identity, and when two elements g and h are 

combined, the resulting permutation 𝜋(𝑔ℎ) of S will be 𝜋𝑔 ◦  𝜋ℎ [7]. 

2.2. Properties about Orbits and Stabilizer and its importance 

Here the author discusses the function and nature of orbits from three aspects. 

From set of Images to deduce the orbit 𝐺(𝑥) consists of all possible outcomes when different 

elements of 𝐺 are applied to 𝑥.Beside the orbit can be used to establishes a relation that satisfies the 

properties of reflexivity, symmetry and transitivity. Over the set  X. Two elements 𝑦, 𝑥 ∈ 𝑋  are 

considered to be equivalent if there exists some 𝑔 ∈ 𝐺  such that  𝑔(𝑥)  =  𝑦 . This equivalence 

relation divides the set X into distinct, non-overlapping subsets. That show the equivalence relation 

characteristic. Partition of the Set: In an addition, the set 𝑋 can be partitioned into disjoint orbits. 

Every element within X is contained in a single orbit, indicating that orbits are mutually exclusive and 

collectively exhaustive. That is the feature of Partition of the Set. The constant in subgroup 

characteristic, connection to symmetry role, in the Orbit-Stabilizer, theorem invariant under 

conjugation that four aspects. That is about Properties about stabilizer. 

The stabilizer is a subgroup of the original group, adhering to the closure property when 

considering the operation of the group and containing the group's identity element. Beside the 

elements in the stabilizer represent symmetries of a specific point under the group action, meaning 

they leave the point unchanged. On the other hand the stabilizer’s size is inversely related to the size 

of the orbit of the point, as described in the theorem that relates the orbit and stabilizer of an element. 

Finally, a stabilizer of a point remains invariant under conjugation within the group. 

Combined with the above, it can be concluded that Orbit and stabilizer has the following 

functions as a mathematical tool. Orbits classify elements of 𝑋 into disjoint subsets known as orbit 

classes. They reveal the structure and symmetry of 𝑋 under 𝐺 ′𝑠 action.  Stabilizers reflect the 

internal structure of properties of 𝐺  and are useful for studying subgroups and so, orbits and 

stabilizers are fundamental tools in group theory and group actions. It provides a structured way to 

analyze symmetries across diverse, mathematical disciplines. 

2.3. Proof two claims 

Then, there are two useful claims-𝐺𝑥 ≤ 𝐺 and the relation 𝑥 ∼ 𝑔(𝑥)∀𝑔 ∈ 𝐺 this relation fulfills 

the criteria for being classified as an equivalence relation. 

Claim 1:𝐺𝑥 ≤ 𝐺 

To show that the stabilizer G is a group, the author needs to verify several group properties. 

Proof: it is clear that 𝐺𝑥 ⊆ 𝐺, So WTS 𝐺𝑥 is a group. Firstly, from closeness aspect to deduce: 

ifℎ, ℎ′ ∈ 𝐺𝑥 ,ℎℎ′(𝑥)  =  ℎ(𝑥)  =  𝑥  so ℎℎ’  fixes 𝑥  then ℎℎ′ ∈  𝐺 .Secondly, from associativity 

aspect to see: as 𝐺 is a group of symmetries (which is itself a group), this means for any ℎ, ℎ′, ℎ" ∈
 𝐺 then (ℎℎ)ℎ" = ℎ(ℎ′ℎ"), the elements in 𝐺𝑥, must be associative. Finally, from the last aspect- 
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Inverse to see. Since 𝐺𝑥 contains all elements that send 𝑥 to itself, if ℎ ∈ 𝐺𝑥so is 
1

ℎ
∈ 𝐺 because  

1

ℎ
 fixes 𝑥 then  

1

ℎ
(𝑥) = 𝑥 and hence(ℎ−1)−1=ℎ is in 𝐺. 

Recall that the way in which group G operates on a particular set S defines a structure-preserving 

map between two algebraic structures of G.to 𝑆𝑦𝑚(𝑋)  and 𝑒  in 𝐺  so is a one that 

fixes  𝑥 (𝑖. 𝑒, 𝑒(𝑥)  =  𝑥) .Since 𝑒 ∈ 𝐺  must correspond to 𝑖𝑑 ∈  𝑆𝑦𝑚(𝑋)  (the larger symmetry 

group) That is, 𝑒 must be an element in 𝐺. 

Claim 2: The relation 𝑥 ~ 𝑔(𝑥)∀ 𝑔 ∈  𝐺  is mapping satisfies the properties necessary to be 

considered an equivalence relation. 

Proof. A relation is an equivalence, if there exists some 𝑔 ∈ 𝐺 for which  𝑦 =  𝑔(𝑥) satisfies the 

equivalence properties, the relation 𝑥 ~ 𝑦  defined by 𝑥 ~ 𝑦 .The breakdown show from three 

aspects. 

For any element 𝑥 ∈ 𝑋, one needs to show 𝑥 ~ 𝑥 since the identity element 𝑒 ∈ 𝐺  satisfies 

𝑥 =  𝑒(𝑥) it follows that x ~ x, proving reflexivity. If there exists 𝑔 ∈ 𝐺 then  𝑥 ~ 𝑦, 𝑦 =  𝑔(𝑥) 

then set 𝑡 = 𝑔−1and the 𝑔−1 is also in 𝐺  𝑡(𝑦) = t((𝑡−1(𝑥)) = 𝑡 𝑡−1 (𝑥) = 𝑥. Since 𝑡 ∈ 𝐺, 𝑥 =
ℎ(𝑦), 𝑦 ~ 𝑥 . If 𝑥 ~ 𝑦 ~ 𝑧,  𝑦 =  𝑔(𝑥)  and 𝑧 =  𝑔′(𝑦)  =  𝑔’(𝑔(𝑥))  =  𝑔′𝑔(𝑥) .As 𝑔′𝑔 ∈
 𝐺, 𝑥 ~ 𝑧,proving transitivity. 

It also can further conclude that 𝐺(𝑥) is an equivalence class of 𝑥, and 𝑋 is partitioned by the 

orbits of its elements and ~ is an equivalence relation this implies that each element an in 𝑌 

belongs to an equivalence class represented by its orbit 𝐺(𝑥). The set 𝑋 is partitioned into disjoint. 

2.4. An Example 

Consider 𝑋 =  {1,2,3}   and the symmetric group 𝐺 =  𝑆3. Consider the element 𝑥 =  1 in 𝑋, 

𝐺 =  𝑆3  can permute 1  to 1 , 2  and  3 , so the orbit  𝐺 (1)  =  {1,2,3} , the order 3 . Notice 

that |𝐺(1)|  =  3. The stabilizer of 1 under 𝑆3consists of all permutations in 𝑆3 that leave 1 fixed. 

It can either swap elements 2 and 3 or leave 2 and 3 fixed. So 𝐺1 =  {𝑖𝑑, (2 3)}  and it is a 

subgroup of 𝑆3  with a cardinality of2. Notice that |𝑆3| = 6 = 2𝑥3 because 𝐺1 = 2  |𝐺(1)|,=
3 |𝐺1| × |𝐺(1)| = 6 so it can get the formula |𝑆3|=|𝐺1| × |𝐺(1)|.Connects the order of links the 

group with the order of the stabilizer and the size of the orbit. 

3. Relation to Other Theorems in Group Theory 

There are three parts to find relationship between serial theorems and orbits-stabilizer theorem, 

definition, relationship and example. 

3.1. Definition 

Definition (Cauchy's Theorem). In a finite group G, if its order is divisible by a prime p, there 

exists an element in G with order precisely equal to p [8]. 

Definition (Lagrange's Theorem). In every finite group G, the order of each subgroup H must be 

a number that evenly divides the group’s total size of G. [9] 

Definition (Burnside's Lemma). The total number of distinct orbits produced by the action of a 

finite group S on a set Y equals the average number of elements in Y that remain fixed under the 

group action (Number of Orbits=
1

|S|
∑ |Ys|s∈S ) [10]. 

So, Cauchy's Theorem asserts that within any finite group 𝐺, when the order of the group is 

divisible by a prime number 𝑝, then there exists an element in 𝐺 whose order is exactly 𝑝. According 

to Lagrange's Theorem, in a finite group G, the size of any subgroup H is a divisor of the size of G. 

Burnside’s Lemma determines the count of unique orbits formed the operation of a finite group on a 

finite set X, by computing the mean number of fixed points for any element of the group. 
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3.2. Relationship between the orbit-stabilizer theorem and three theorems 

Consider 𝐺 acting on itself by conjugation. For any element 𝑔 ∈ 𝐺, the orbit of an element as a 

result of this action is the set of all conjugates of  𝑔 . The stabilizer in g corresponds to 

centralizer 𝐶𝐺(𝑔) of 𝑔. According to the theorem that relates the size of the orbit and stabilizer of an 

element under a group action, the size of the orbit is [𝐺: 𝐶𝐺(𝑔)]. By Cauchy's theorem, if p is a divisor 

of ∣G∣, the group includes an element whose order equals p, there is an element 𝑔 whose order is 𝑝. 

This element generates a cyclic subgroup of order 𝑝, and the corresponding stabilizer 𝐶𝐺(𝑔) has an 

index divisible by 𝑝, implying the existence of a non-trivial orbit, and hence a non-trivial conjugacy 

class. 

If 𝐺 acts transitively on a set 𝑋, then the Orbit-Stabilizer Theorem implies that the size of any 

orbit equals the index of the stabilizer subgroup. Since the size of the orbit divides ∣ 𝐺 ∣, Lagrange's 

theorem is satisfied. Specifically, the orbit size ∣ 𝐺: 𝐺𝑥 ∣ is the product of the stabilizer size ∣ 𝐺𝑥 ∣ and 

the number of distinct cosets. By summing up the contributions from the fixed points of each group 

element, Burnside’s lemma is a method for calculating the number of distinct orbits in a group action. 

3.3. Examples and proof the orbit-stabilizer theorem satisfies in each theorem: 

3.3.1. Proof Cauchy's Theorem 

Cauchy's Theorem example: Suppose G consists of a limited number of members. And a 

prime p is a factor of its order, then G contains an element whose order is exactly p. Consider G acting 

through conjugation, the group acts on itself. For  𝑔 ∈ 𝐺 , the orbit of g under this action is the 

conjugacy class of g, denoted as Orb(g) = {xgx − 1 ∣ x ∈ G}. 

The stabilizer of g for this action corresponds to the centralizer CG(g), consisting of all elements 

in G that commute with g. According to the Orbit-Stabilizer Theorem, the size of g′s orbit under this 

action is given by |𝑂𝑟𝑏(𝑔)| =
|𝐺|

|𝐶𝐺(𝑔)|
, then since p divides ∣ 𝐺 ∣, consider the action on conjugacy 

classes where the centralizer's size ∣ 𝐶𝐺(𝑔) ∣ might not be divisible by 𝑝. This means the orbit size ∣
𝑂𝑟𝑏(𝑔) ∣ is divisible by 𝑝, implying the existence of a non-trivial conjugacy class whose size is a 

multiple of 𝑝, and thus there is a corresponding element whose order is 𝑝. 

For the group 𝐺 = 𝑆3(with 3 order), the order of 𝑆3 is 6. Consider 𝑝 = 2, and 𝑆3 has elements 

of order 2: (12),  (13) and (23). the centralizer of (12) is the subgroup {(1), (12)}, so ∣ 𝐶𝐺(12) ∣=
2. the orbit of (12) under conjugation is of size 6 ÷ 2 = 3. This confirms the existence of a non-

trivial conjugacy class, showing that 𝑆3 has elements of order 2.it is same with Cauchy’s theorem. 

3.3.2. Proof Lagrange's Theorem 

Suppose 𝐺 operates on the set X where ∣ 𝑋 ∣= 𝑛 and the action is transitive. For any 𝑥 ∈ 𝑋, the 

size of the orbit 𝐺 ⋅ 𝑥  is ∣ 𝐺: 𝐺𝑥 ∣, where 𝐺𝑥 is the stabilizer of 𝑥  in 𝐺  By the Orbit-Stabilizer 

Theorem ∣ 𝐺 ∣=∣ 𝐺 ⋅ 𝑥 ∣×∣ 𝐺𝑥 ∣ where ∣ 𝐺 ⋅ 𝑥 ∣ is the orbit size and ∣ 𝐺𝑥 ∣ is the stabilizer size. 

Both of these sizes divide ∣ 𝐺 ∣, confirming Lagrange’s theorem. 

For the group 𝐺 = 𝑍4  (order 4), 𝐺  acts on itself by addition. The stabilizer of any 

element 𝑥 (𝑠𝑎𝑦 𝑥 = 1) under this action is trivial, so 𝐺𝑥 = {0} and ∣ 𝐺𝑥 ∣= 1. The orbit of 1 is the 

entire group {0,1,2,3}, so the orbit size is 4. Then, by Orbit-Stabilizer Theorem, ∣ 𝐺 ∣=∣ 𝐺 ⋅ 1 ∣×∣
𝐺1 ∣= 4 × 1 = 4. The size of the orbit divides ∣ 𝐺 ∣, satisfy the Lagrange’s theorem. 

3.3.3. Proof Burnside's Lemma 

When the group G interacts with the set X, the total number of unique orbits is given by the fact 

that Number of Orbits=
1

|𝐺|
∑ |𝑋𝑔|𝑔∈𝐺 , where ∣ 𝑋𝑔 ∣ is the number of elements in 𝑋 fixed by 𝑔. For 

any 𝑥 ∈ 𝑋, ∣ 𝑋𝑔 ∣ is related to the stabilizer 𝐺𝑥, and the theorem that connects the size of the orbit 

with the stabilizer of an element under group action show the size of each orbit. It can use to count 

the count of distinct orbits. 

For the group G=𝑍2 acting on the vertices of a square, the count of distinct orbits=
1

|𝐺|
∑ |𝑋𝑔|𝑔∈𝐺 . 
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The action swaps two vertices at a time. Consider the group action on the vertices 𝑉 =
{𝐴, 𝐵, 𝐶, 𝐷} of the square. The stabilizer of any vertex under rotation by 180° is𝐺𝐴 = {𝑒}, so ∣ 𝐺𝐴 ∣
= 1.  the total number of orbits resulting from the group action is that Number of Orbits =
1

|𝐺|
∑ |𝑋𝑔|𝑔∈𝐺 . So, 2 distinct orbits under this group action. 

4. Conclusion 

To summarize, this paper discusses the definitions, functions, properties, and claims of the orbit 

and stabilizer in group actions, as well as the Orbit-Stabilizer Theorem in mathematical group theory. 

The author also provides the proofs of these theorems. Examples are given to illustrate the order of 

the stabilizer and the size of the orbit. Finally, the paper explores the relationship between the Orbit-

Stabilizer Theorem and three theorems—Cauchy's Theorem, Lagrange's Theorem, and Burnside's 

Lemma. The paper concludes that orbit and stabilizer are fundamental and foundational concepts in 

group theory. While the discussion extends from these basic concepts to explore their connections 

with other theorems, it does not integrate a wide range of examples. In future research can focus on 

extending the concept of orbits and stabilizers to advanced algebraic structures like Lie groups, 

algebraic groups, and topological groups. These extensions can reveal new mathematical properties 

and potential applications in physics, particularly in areas like quantum mechanics. 
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