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Abstract. The group theory is an essential subject in Mathematics and Physics, and the target of 
this paper is to prove a famous theorem in group theory, so-called Lagrange’s Theorem. By using 
some really basic definitions of group, the exsistance of this theorem is essential for abstract algebra. 
In this paper, the author will focus on how to prove Lagrange’s Theorem step by step from the base 
of group theorey, mainly by using the nature of cosets and how does each coset in the same 
subgroup behaves to get the final result. Ultimately, the author will demonstrate that the order of the 
group is divisible by the order of its subset. As mentioned ealier, the status of this theorem is 
unshakable. Because of this theorem, many other corollary theorem was discovered, for example 
Wilson’s Theorem and etc. All of these corollaries are very important in modern technologys, going 
deep into this theorem could help discover more useful applications of it. This paper should be 
essential for people who are interested in the Lagrange’s theorem. 
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1. Introduction  

Lagrange’s Theorem was first stated in 1770-71 by Joseph-Louise Lagrange [1]. He published this 

theorem in one of his famous article, “Reflexions sur la resolution algebrique des equarions” [2]. He 

stated that is a polynomial which has 𝑛 variables that can be permuted in 𝑛! ways, the number of 

distinct polynomial that behave like this is always a multiple of 𝑛!. For example, take 𝑥 and 𝑦 as 

two variables, and they permutes in all 2 ways in the equation 𝑥 − 𝑦 then in total, there are 2 

different equation 𝑎 −  𝑏 and 𝑏 −  𝑎, and 2 is a factor of 2. From the point view of history, the 

theorem was published without any proof, and the first authoritative proof was provided by Augustin-

Louis Cauthy in 1844. During the past decades, it has been demonstrated that the Lagrange’s theorem 

has many applications. 

The existance of this theorem built up the base of group theorey, there are many other important 

corollary from Lagrange’s Theorem, for example “if 𝐺  is not infinite with | 𝐺 |  prime, 

subsequently 𝐺 is a cyclic group”, “if the order of group 𝐺 has a finite number 𝑛 then the order 

of any 𝑎 that belongs to 𝐺 divides the order of 𝐺 and in some special 𝑎𝑛 = 𝑒”, and also of course 

some famous theorems like Wilson’s theorem and Fermat’s Little theorem, among others. The 

application of Lagrange’s Theorem has been used in many areas in modern society, especially on 

internet technology, some network security system, a famous one would be RSA Crypto System, are 

based on it. The key of investigating Lagrange’s Theorem is to find out more useful applications for 

the world. 

This paper is written in three sections. The first section is about a brief introduction of Lange 

range’s Theorem and how important in abstract algebra and its status in modern science. Next section 

is about the proof of Lagrange’s Theorem, the author will prove some basic theorems of group theory, 

mostly about cosets, and use them for the final prove of Lagrange’s theorem later on. The last section 

is about some famous applications of this theorem, which contain Fermat’s Little theorem and 

Wilson’s Theorem, and the author will provide some examples of how these corollaries can be used 

in high level technologies. 
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2. Lagrange’s Theorem 

2.1. Introduction of Theorem and Coset 

There are many important concepts in group theory. Here, for clarify, the author will present some 

of the major concepts.  

Theorem 1: If 𝑎𝜖𝐻𝑏, then 𝐻𝑎 =  𝐻𝑏. 
Theorem 2: Let 𝐺 be a group and 𝐺 ≥ 𝐻. The family of all coset𝐻𝑎, as a ranges over 𝐺, is a 

partition of 𝐺 [3] 

Theorem 3: Every arbitrary coset 𝐻𝑎 contains an equal number of elements as subgroup 𝐻, so all 

cosets of 𝐻 in 𝐺 possess the same cardinality. 

Theorem 4: Let 𝐺 be a finite group and let 𝐻 be a subgroup of 𝐺. The order of 𝐺 is always a 

multiple of the order of subgroup 𝐻. 

Define a group called 𝐺 and 𝐻 is a subgroup of𝐺. For all element 𝑥 that is in 𝐺, 𝑥𝐻 denotes 

the set of all products 𝑥ℎ, as 𝑥 stay the same and ℎ can be any element in 𝐻, then 𝑥ℎ is a left 

coset of 𝐻 in 𝐺. Namely, 𝑥𝐻 = { 𝑥ℎ | ℎ ∈ 𝐻 } is a left coset, while 𝐻𝑥 =  { 𝑥ℎ | ℎ ∈ 𝐻 } is a 

right coset [4]. 

2.2. Proof of Theorems 

Let this paper begin with the proof of theorem 1. Let 𝐻 be a subgroup of 𝐺, and two cosets 

𝐻𝑎 𝑎𝑛𝑑 𝐻𝑏.  If 𝑎 ∈  𝐻𝑏, then it is inferred that 𝑎 =  ℎ1𝑏.Firstly, the author will show that 𝐻𝑎is a 

subset of  𝐻𝑏 . Take some  𝑥 ∈  𝐻𝑎, for some element of 𝐻. 𝑥 =  ℎ2𝑎 =  ℎ2(ℎ1𝑏)  =
 (ℎ2ℎ1)𝑏 𝜖 𝐻𝑏(1), so 𝐻𝑎 ≤  𝐻𝑏. Then take some 𝑦 ∈  𝐻𝑏, for some element of 𝐻. Since 𝑎 =  ℎ1𝑏, 

multiply both side by ℎ1
−1, thus 𝑏 =  ℎ1

−1𝑎, 

𝑦 = ℎ3𝑏 = ℎ3(ℎ1
−1𝑎) = (ℎ3ℎ1

−1)𝑎 (1) 

Thus,  𝐻𝑏  ≤  𝐻𝑎 and finaly theorem 1 is proved.  

Moving on to the proof of theorem 2. Begin with taking two cosets 𝐻𝑎 𝑎𝑛𝑑 𝐻𝑏, the aim is to 

show that 𝐻𝑎 ∩  𝐻𝑏 =  ∅ 𝑜𝑟 𝐻𝑎 =  𝐻𝑏(they are either disjoint or equal). Assume there is an overlap 

between 𝐻𝑎 𝑎𝑛𝑑 𝐻𝑏, take some element of 𝑥 where 𝑥 ∈  𝐻𝑎 ∩  𝐻𝑏 , since 𝑥 is in the coset 𝐻𝑎, 

so 𝑥 =  ℎ1𝑎 , for some element of  ℎ1 . 𝑥  Is also in the coset 𝐻𝑏 , therefore 𝑥 =  ℎ2𝑏 , for some 

element of ℎ2. As 𝑥 =  ℎ1𝑎, multiply both side by ℎ1
−1   𝑎 =  𝑥ℎ1

−1. 𝑥, as shown earlier, equals 

to  ℎ2𝑏 , so  𝑎 =  ℎ1
−1ℎ2𝑏 , since 𝐻  is a subgroup, ℎ1

−1ℎ2  shows that the subgroup is closed, 

so ℎ1
−1ℎ2  ∈  𝐻, thus 𝑎 is equals to some element of 𝐻 times 𝑏.So 𝑎 ∈  𝐻𝑏. By applying Theorem 

1 that was been proved earlier, 𝐻𝑎 = 𝐻𝑏. Then show every element 𝑐  ∈  𝐺 is in some 𝐻. 𝑐  𝜖  𝐻𝑐, 

this is true because of the existence of the identity 𝑒, 𝐻 is a subgroup; therefore, it must include the 

element 𝑒, 𝑒𝑐 =   𝑐  𝜖  𝐻𝑐 Now theorem 2 is proved.  

Next is the proof of theorem 3. To prove this, it is necessary to prove there is a bijection 

from𝐻 𝑡𝑜 𝐻𝑎. First, the author will define a function, 𝑙𝑒𝑡 𝑓: 𝐺 →  𝐺𝑎 be defined by 𝑓(𝑔)  =  𝑔𝑎. 

To prove bijectivity, the most efficient way is to prove it is injective and surjective. To prove it is 

injective 𝑙𝑒𝑡 𝑓(𝑔1)  =  𝑓(𝑔2), by the definition of injective, for a function 𝑓: 𝐴 → 𝐵, any 𝑎 , 𝑏 ∈  𝐺,

𝑓(𝑎)  =  𝑓(𝑏)  →  𝑎 =  𝑏 [5], by the definition of the function,  𝑔(𝛼)  =  𝑔(𝛽)  →  𝛼𝑎 =  𝛽𝑎 →  𝛼 =  𝛽 

thus the function is injective. Moving on to surjective, by the definition of surjective, for a function 

𝑓: 𝐴 →  𝐵,  for every 𝑏 ∈  𝐵  there is some 𝑎 ∈  𝐴  for which 𝑓(𝑎)  =  𝑏 [6],Take an arbitrary 

element 𝑔𝑎 ∈  𝐺𝑎 , since 𝑔 ∈  𝐺, it is clear that 𝑓(𝑔)  =  𝑔𝑎 .By showing that the function is 

injective and surjective at the same time, it shows that there is a bijection from 𝐺  to 𝐺𝑎. This 

indicates that the order of the subgroup 𝐺 and the arbitrary coset 𝐺𝑎 are equal. By now, theorem 3 

has been proved. 

Lastly is the proof of theorem 4, Lagrange’s theorem. Assume that 𝐺 is a limited group and let 

𝐻 represents a subgroup of 𝐺, the number of elements in 𝐺 can be express as  

| 𝐺 | = | 𝐻𝛼1 | + | 𝐻𝛼2 | + | 𝐻𝛼3 | + ⋯ + |𝐻𝛼𝑛 | (2) 
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Where 𝛼𝑖  ∈  𝐺. As proved earlier, by using theorem 3,  

| 𝐻𝛼 1 | = | 𝐻𝛼2 | = | 𝐻𝛼3 | = ⋯ = | 𝐻𝛼𝑛 | (3) 

Thus | 𝐺 |  =  𝑛 | 𝐻𝛼1 |, and note that 𝑛 is the number of coset in subgroup 𝐻. The order of any 

coset is equal to the order of the subgroup since a subgroup is itself a coset, so | 𝐺 | = 𝑛 | 𝐻 |. This 

is prove of Lagrange’s theorem using the two fundamental theorem of cosets. The converse of 

Lagrange’s Theorem is invalid, a counter example would be an alternating group on four points, it is 

a group of order 12 that does not possess any subgroup of order 6 [7]. 

3. Application of Lagrange’s Theorem 

3.1. Fermat’s Little Theorem 

The theorem was first stated on October 18th, 1640, by Pierre de Fermat, the theorem was in a 

letter to his good friend Frénicle de Bessy. His original statement translate in English was “Every 

prime integer [𝑝]  necessarily divides one of the powers minus one of any geometric 

progression[ 𝑎, 𝑎2, 𝑎3, … , 𝑎𝑛 ], there exists a value 𝑘  such that 𝑝 divides  𝑎𝑘−1 , and the exponent 𝑘 

divides  𝑝 − 1.  Once the first power [ 𝑘 ]  that fulfills the criteria is identified, all powers whose 

exponents are multiples of the initial exponent will similarly satisfy the criteria; in other words, all 

multiples of the initial 𝑘 possess the same attribute. He did not include any proof of the theorem in 

the letter and never did so throughout his life. The inaugural officially published proof was presented 

by Euler in 1736, in a paper called “Demonstration of Certain Theorems Concerning Prime Numbers” 

[8] 

Fermat’s Little Theorem is a consequence of Lagrange’s Theorem and represents a significant 

foundational result in number theory. It discusses that if a number p is prime and i is an integer not 

divisible by p, then it means 

𝑖𝑝−1 ≡ 1(𝑚𝑜𝑑𝑝) (4) 

Proof: let 𝐺 be a group, 𝑜( 𝑔 ) = | < 𝑔 > | where 𝑔 is a subgroup of 𝐺. By using Lagrange’s 

Theorem, one knows that | 𝐺 | is divisible by 𝑜(𝑔), so | 𝐺 | = 𝑛 ∗ 𝑜( 𝑔 ), where 𝑛 is any positive 

integer. Thus  

𝑔|𝐺| =  𝑔𝑛∗𝑜(𝑔) = ( 𝑔𝑜(𝑔) )𝑛 = 𝑒𝑛  = 𝑒 (5) 

Author will now think another group ℤ𝑝
𝑥 which is a group of size 𝑝 − 1  [ 𝑖 ]𝑝  ∈  ℤ𝑝

𝑥, so[ 𝑖 ]𝑝
𝑝−1

=

[ 1 ]𝑝, so [ 𝑖𝑝−1 ]𝑝 = [ 1 ]𝑝, so 𝑖𝑝−1  ≡ 1 𝑚𝑜𝑑 𝑝 [9]. 

Fermat’s Little Theorem is an important number theorem. It has been widely used on many areas, 

for example when users visit a secure website on the browser, this theorem gets used as a part of the 

RSA Crypto System, which is like the basis of internet security. 

3.2. Wilson’s Theorem 

The person who first stated this theorem was an Iraqi mathematician called Ibn al-Haytham in 

1000 AD. The person who published the theorem was a British mathematician called Edward Waring 

in 1770 but without proving the theorem and gave credit to his student John Wilson for what they had 

found [10]. The first official proof was provided by Joseph-Louis Lagrange in 1771, there is evidence 

show that Gottfried Wilhelm Leibniz also discovered the result 100 years earlier, but never published. 

The definition of Wilson’s theorem is quite simple, it stated that if 𝑛 >  1 and 𝑛 is a prime 

number, then ( 𝑛 − 1 ) ! is always one less than 𝑝𝑛, where 𝑝 ∈  ℤ+ and there is only one 𝑝 that 

follows the theorem. The Theorem can be represented as  

( 𝑛 − 1 )! ≡ −1( 𝑚𝑜𝑑 𝑛 ) (6) 
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Proof. There are multiple of ways to prove this theorem, the author will used Fermat’s Little 

Theorem since the thesis is about Lagrange’s Theorem. There is no significance to talk about 

when 𝑛 = 2, because 2! = 2, and obviously it does obey the theorem, so assume 𝑛 is a prime integer 

greater or equals to three. Think about a function  

𝑓( 𝑥 ) = ( 𝑥 − 1 )( 𝑥 − 2 )( 𝑥 − 3 ) … (𝑥 − (𝑛 − 1) ), (7) 

So the degree of this polynomial is 𝑛 − 1, with a constant term ( 𝑛 − 1 )!, and the roots of this 

polynomial are 1, 2, 3, 4, … , 𝑛 − 1. Consider another function 𝑔( 𝑥 ) =  𝑥𝑛−1 − 1. The degree of 𝑔 

is also 𝑛 − 1. According to Fermat’s Little Theorem, modulo 𝑛 also should have 𝑛 − 1 roots. 

Lastly, let ℎ( 𝑥 ) = 𝑓( 𝑥 ) − 𝑔( 𝑥 ), the highest degree of ℎ( 𝑥 ) can only be 𝑛 − 2 because the 

leading term in 𝑓 and 𝑔 cancels with each other, again modulo 𝑛 has 𝑛 − 1 roots. But according 

to Lagrange’s Theorem, modulo 𝑛 could not have root number more than 𝑛 − 2. This mean function 

ℎ must be equal to 0 ( 𝑚𝑜𝑑 𝑛 ), thus the constant term of ℎ is ( 𝑛 − 1 )! + 1 which is identically 

equal to  0(𝑚𝑜𝑑 𝑝) . Since  ( 𝑛 − 1 )! + 1 ≡  0(𝑚𝑜𝑑 𝑝) , move one to the right,  ( 𝑛 − 1 )! ≡
 −1 ( 𝑚𝑜𝑑 𝑝 ) and this is Wilson’s Theorem. 

Finally, the author mentions that Wilson’s Theorem is used in many other formulas, for example 

Quadratic Residues, Formulas for Prime and etc.  

4. Conclusion 

This paper had provide a detailed proof of Lagrange’s Theorem by starting from a basic 

introduction of coset and a fundamental feature of coset: If 𝑎𝜖𝐻𝑏, then 𝐻𝑎 =  𝐻𝑏, then by some 

simple calculation, the author illustrated the correlation between the number of elements in a coset 

and the number of elements in a subgroup. At the end of section two, the author showed if 𝐺 is a 

group and 𝐻 is a subgroup of 𝐺 then the order of 𝐻 must always divide the order of 𝐺, which is 

the main aim of this paper, demonstrate the proof of Lagrange’s Theorem. In section 3, the author 

had introduced two famous applications of Lagrange’s Theorem, Fermat’s Little Theorem and 

Wilson’s Theorem, and how are they been used. Lagrange’s Theorem is great in various science areas, 

it had made thousands of contributions on computer science and cryptography. In the future, scientists 

might want to improve the current systems of cyber security by what people have already created. 

The author believes that Lagrange’s theorem can also be use on the development of artificial 

intelligence, mainly on the efficiency of calculations.  
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