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Abstract. Accurate core loss prediction is essential for the design of high-performance magnetic
components for power electronics. In this study, a modified Steinmetz's equation incorporating a
temperature factor is introduced to improve the accuracy of core loss prediction. By analyzing the
independent and synergistic effects of various factors on core loss using multiple linear regression,
partial correlation analysis, and Bayesian factor analysis, this study applies a genetic algorithm to
find the conditions for minimizing core loss and constructed a model based on the Random Forest
algorithm for predicting the core loss of different materials. In addition, considering that core loss is
not the only thing that affects the performance of magnetic elements, this study considers both core
loss and transmitted magnetic energy and uses particle swarm optimization (PSO) to determine the
optimal conditions for magnetic elements. It is shown that the modified model and optimization
method can more accurately predict and optimize the performance of magnetic elements, providing
a comprehensive solution for power conversion systems.

Keywords: Core loss prediction, Magnetic component optimization, Data-driven, Steinmetz's
equation, Model construction.

1. Introduction

Magnetic components are the bottleneck to improved power conversion which in turn is a
bottleneck in future computing, vehicle and advanced scientific applications, as well as in bulk energy
generation, transmission, and storage [1-2]. Therefore, in order to design higher frequency and power
density power conversion systems, it is necessary to accurately predict and reduce the core loss and
optimize the performance of magnetic components [3].

In the existing research, the most widely used method of calculating the existing core loss
prediction is the Steinmetz’s equations. Despite promising results using Steinmetz’s equations, those
are not enough to calculate the core losses accuracy according to the need for the power electronic
community [4], so many scholars have optimized on its basis. Chao Feng et al. have introduced a
frequency correction for peak magnetic flux density for silicon steel wafers [5]. J. Drappier et al. have
explored the implications of nonlinear anisotropic behavior models on the simulation of magnetic
losses in a toroidal core made of a conventional grain-oriented electrical steel (GOES) within a finite
element method (FEM) simulation environment [6]. Wenfei Yu et al. have proposed a high-frequency
core loss prediction method based on finite element and numerical computation method (NCM) [7].
Chao Mei et al. have investigated the effect of excitation waveform and DC bias field on core loss
for soft magnetic composites (SMCs) [8]. Most of the teams, exemplified by the scholars mentioned
above, have used different algorithms for a particular material and introduced different parameters to
correct the prediction of core loss [9-10], but the effect of material type, synergies between factors,
etc. are not quantitatively considered. On the other hand, in order to improve the performance of
magnetic components, Huairun Chen et al. have proposed an optimization method to increase the
power density and efficiency of integrated magnets by reducing core losses [11], Degiu Yang et al.
have proposed a simple differential method for measuring core loss under sinusoidal excitation[12].
However, these existing studies on performance optimization of magnetic components have basically
only considered the prediction and reduction of core losses, without taking into account the fact that
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optimizing core losses may lead to other performance degradations [13]. So optimization models
based on core loss prediction, while also considering other performance indicators, need further in-
depth research.

Based on existing real databases, for the same material, this study firstly modifies the conventional
Steinmetz's equations and introduces the temperature factor to construct a more accurate core loss
prediction model, and comparative tests were conducted. Then, this study further consideres different
core materials and investigates the independent effects of temperature, excitation waveform and core
material on core loss and the synergistic effects among them by multiple linear regression, partial
correlation analysis and pairwise correlation Bayesian factor analysis, and applied genetic algorithms
to find out the conditions that minimize the core loss. Finally, on the basis of the core loss prediction,
this study further considers the transmitted magnetic energy index and explores the conditions for the
optimal overall performance of magnetic components with the help of particle swarm algorithm.

2. Methodology

2.1. Description of the Dataset

In order to construct the core loss prediction model more realistically and to check its accuracy,
this paper chooses the public dataset of magnetic components provided by the China Post-graduate
Mathematical Contest in Modeling available at https://cpipc.acge.org.cn/cw/hp/4.

The dataset consists of temperature, frequency, core loss, excitation waveforms, and flux densities
at 1024 different phases for magnetic elements made of four different materials, with one set of
physical quantities corresponding to one sample. There are 3400 samples for material I, 3000 samples
for material 11, 3200 samples for material 111, and 2800 samples for material 1V, totaling 12,400
samples with 1028 data features for each sample, constituting a dataset with high dimensionality and
a large number of samples. The core loss and other related physical quantities of these different
material magnetic components provided in the dataset are utilized to construct a core loss prediction
model.

2.2. Modification of the Steinmetz’s equation

2.2.1. Data-driven predictive modeling of the conventional Steinmetz’s equation

The main influencing factors of core loss are operating frequency, magnetic flux density, excitation
waveform, operating temperature, core material, etc., while applying the empirical calculation model
can be more conveniently calculated to obtain the core loss, for sinusoidal waveforms, this paper
directly applies the conventional Steinmetz's equation for the calculation, the formula is as follows:

P=ky-f By (1)

It is known that in a sinusoidal wave, the core loss per unit volume (core loss density) P depends
on the power function of the frequency f and the peak flux density Bm, but the three coefficients, k;,
aq,f1, may be changed for different core materials and operating environments. In order to verify the
prediction accuracy of the conventional Steinmetz's equation without considering the effect of
environmental factors on the three coefficients, the parameters in the Steinmetz's equation need to be
obtained by fitting from experimental data.

Taking material I as an example, this paper chooses a nonlinear least squares method for fitting.
This paper firstly finds 1067 sets of data from the dataset with sinusoidal waveforms, and for each
set of data constructs vectors [Bm, f]. A data matrix is obtained using 1067 sets of data, and it is
necessary to find a set of vectors set [k, , a1, f1] to minimize the value of the following objective
function:

2
Jin, 2t (P i~k S Br[:);i) )

43



Highlights in Science, Engineering and Technology IFMPT 2025
Volume 128 (2025)

where P; is the actual loss value of the ith sample, f; and B,,; are the frequency and peak flux
density of the ith sample, and n is the total number of samples, and the values of these three
parameters can be found by regression analysis of these three variables.

This paper obtains the three coefficients corresponding to each of the four materials by this method
as shown in Table.1.

Table 1. Conventional Steinmetz's equation fitting coefficients

Material type ki al Bi
Material | 1.4997 1.4296 2.4713
Material II 0.5615 1.5128 2.3211
Material II1 0.9705 1.4907 2.3854
Material IV 0.3997 1.5781 2.4526

Taking the data of material I as an example, the three coefficient values were obtained as follows:
k,=1.4997, a,;=1.4296, [,=2.4713, so the Steinmetz's equation for material I can be obtained as:

P — 14997 . f1.4296 . BT%.4-713 (3)

2.2.2. Modified equation modeling

After reviewing the literature, this paper finds that temperature also has a significant effect on core
losses, but the temperature parameter is not introduced in the conventional Steinmetz's equation[14-
15]. Therefore, this paper constructs the modified equation as follows by including the temperature
correlation function as part of the multiplier factor with together:

p=k1.fa1.Br€l1.TV (4)

Still taking the data of Material I as an example, the three values of the coefficients from the fitting
are as follows: k;=4.7383, a;=1.4635, ,=2.4485, y=-0.4018.
Thus for material 1, the modified equation can be obtained as:

P =4.7383 - f1.4—635 . Ban.4-4—85 . T—0.4018 (5)

Substituting 1067 sets of temperature, frequency, peak flux density, and core loss into the
conventional and modified Steinmetz's equations, respectively, this paper applies matlab to plot the
point set plots as shown in Figure 1 below, comparing the fitted data and the actual data predicted by
the two equations.
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Figure 1. Fitting image points
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In order to make the comparison more obvious, a two-dimensional comparison plot containing
only the predicted and actual values is plotted as in Figure 2 below, where it can be qualitatively
obtained that the deviation of the core loss values predicted by the modified Steinmetz's equation
from the actual values is smaller than that of the conventional equation.
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Figure 2. Plot of predicted versus actual values for conventional and modified equations

2.3. Analysis of core loss factors and optimal solutions

In the previous section, the modified Steinmetz's equation equations constructed in this study can
only predict the core loss for the same material and waveform. In this section, the study will further
investigate the effects of material, excitation waveform, and other factors on core loss to construct a
prediction and optimization model with wider applicability.

2.3.1. Independent factor analysis based on multiple linear regression models

For temperature, excitation waveform, material type, and the core loss corresponding to each
parameter, this study develops the following multiple linear regression model:

Y=P5+BX+ BX + Bk + €, (6)

where y denotes the core loss, xi denotes the dummy variables of temperature, different excitation
waveforms and core materials, respectively, £ denotes the regression coefficients corresponding to
each item, and ¢ denotes the error term. The final running results are obtained as follows:

Table 2. Goodness of fit, data independence test results of multiple linear regression analysis

R R? Adjusted R? Durbin-Watson
0.653 0.427 0.388 1.532

The above results show that the model fits well and the Durbin-Watson test falls between 0-4,
indicating that the datas are consistent with independence.

In this study, by analyzing the significance, confidence interval and correlation of the multiple
linear regression results, it is found that the excitation waveform is relatively significant and its
coefficient is greater than O, which is a positive effect relationship, while for the temperature and the
core material, it is a negative effect relationship, which is just in line with our intuitive perceptions,
that is to say: in the state of higher temperatures, the core loss decreases slightly but the effect is not
very significant; for the For sine waves, the core loss is also relatively small. Therefore, considering
only the independent factors, this paper gains:
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y =101986.561—483.281x, +81139.822x, —16115.608X,. (7

To further investigate the independent effects of each factor, this paper uses Pearson correlation
coefficient and partial correlation analysis to measure the linear relationship between the two
variables.Meanwhile, this study also utilizes pairwise correlation Bayesian factor inference for
analysis, comparing the support for the null hypothesis and alternative hypothesis using Bayesian
factors. Based on the above analysis, this study finds that among various factors, the excitation
waveform has the greatest impact, followed by the magnetic core material.

2.3.2. Synergy analysis based on linear regression modeling

In addition to the independent effects of individual factors, this study also analyzes the synergistic
effects between pairwise factors. The interaction term can be used in mathematics to represent the
synergy between two factors, i.e., how one independent variable moderates the effect of another
independent variable. Therefore, for the analysis of the synergistic effect of the three factors,
temperature, excitation waveform and core material, two by two in this question, this paper can build
a regression model with an interaction term as follows:

Y=L+ BX+ BoXo + BiXs + B () + B (XXs) + B (%) + &, (8)

The meaning of each parameter is the same as the independent analysis in the previous text, and
the product of the two parameters represents the interaction term between the two factors.

After conducting goodness of fit, data independence, significance, confidence interval, and
correlation analysis, it can be seen from the data that adding synergistic factors also has a certain
impact on magnetic core losses, and it can be seen that under the dual effects of temperature and
excitation waveform, temperature and magnetic core material, etc., there is a negative correlation
effect, while under the dual effects of excitation waveform and magnetic core material, there is a
positive correlation effect. Specifically, there are:

y =30691.420 +1095.876X, +114097.372x, —22555.719%, — 743.791(x,x,) — 36.630(x,X,) + 4296.064(x,%;). ~ (9)

Taking material and excitation waveforms as examples, this paper conducts visualization
processing to support the above conclusion, as shown in Figure 3:
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Figure 3. Visualization image of the synergistic effect between excitation waveform and material
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Alternatively, if the relationship between certain factors is not considered to be linear, for example,
the effect of temperature on losses may be nonlinear, this paper can also consider introducing a
nonlinear term, for example, the model with a quadratic term can be expressed as:

y =ﬂo +:31X1 +ﬂzxz +ﬂ3X3 +:B4 (Xixz) +ﬂ5(X1X3) +186(X2X3) +ﬂ7X12 +ﬂ8X22 +ﬂ9X§ +é, (10)

This allows us to capture the nonlinear relationship between temperature, excitation waveform and
core material, which is a generalization of the linear model.

2.3.3. Solving for optimal core loss

In the above analysis this paper has obtained that the interaction of different factors affects the
core loss. In order to optimize the core design and minimize the loss, this paper considers genetic
algorithm in order to get the optimal solution.

In a genetic algorithm, each individual represents a possible solution. Our goal is to optimize the
effect of temperature x1, excitation waveform xz, and core material X3 on core loss. This paper encodes
each individual as a set of parameters (x1, X2, X3), initializes a population, and generates a set of random
solutions. Assuming a population size of 100, each individual is a randomized combination. Since
this paper wants to minimize the core loss, the fitness function should be based on the value of the
core loss. For different combinations, the corresponding core loss is calculated. The better individual
is then selected based on the fitness, using the classical selection method, and crossover operation is
used to generate a new generation of individuals. The new individuals will inherit some of the
properties from their parents, but will be able to explore new solutions. To avoid the algorithm from
falling into a local optimum, a mutation operation is required, i.e., randomly changing some genes of
the individuals. For the discrete variables excitation waveform and core material, they can be
randomly replaced with another possible value. When the termination condition is satisfied, the
individual with the highest fitness is selected as the optimal solution.

2.4. Optimization of magnetic components based on core loss prediction

In this section, this study will further apply machine learning algorithms to refine the core loss
prediction model. At the same time, this study considers that the purpose of reducing core loss is to
improve the performance of magnetic components, so this paper also needs to comprehensively
consider other performance metrics.

2.4.1. Multifactor core loss prediction model with application of random forests

The core loss is related to the temperature (1), material (2), excitation waveform (3), frequency
(4), and peak flux density (5), so this study uses a random forest model to fit on this basis, where the
importance of each factor is shown in Figure 4.
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Figure 4. Plot of predicted versus actual values for conventional and modified equations
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To further measure the model prediction performance, this paper utilizes the mean square of the
difference between the predicted and actual values (MSE), which is used to assess the accuracy and
effectiveness of the Random Forest model in predicting continuous values, and the MSE value
obtained is 4877931180.5022, which indicates a good prediction performance.

2.4.2. Dual-objective optimization model

Considering that in addition to the core loss, other factors such as the transmitted magnetic energy
also affect the performance of the magnetic element, this study seeks to find conditions that allow the
magnetic components to achieve the smallest possible core losses while transmitting the maximum
possible magnetic energy.

Here, this paper can try to turn a dual objective into a single objective, i.e., put the two variables
in the same functional expression and assign different weights. If this paper makes the new objective
function z, this paper has:

z=ay — B(f " Bnax) (11)

Where «, f are the respective weights, y denotes the core loss of the magnetic element, f represents

the frequency, and Bmax is the peak magnetic flux density, then this paper just needs to find the

minimum value of the function z. If this paper makes 5 = 1 - a, the objective function is transformed
into:

z=ay+ (a — 1B " Bnax) (12)

This allows us to further utilize the optimization method for the analysis of the objective function,
and through calculations this paper concludes that a=0.6815, 5=0.3185.

2.4.3. Optimization analysis of magnetic components based on PSO

This paper chooses to use the particle swarm optimization (PSO) algorithm to solve the problem.
For the whole process, this paper proceeds in the following steps:

I. Particle representation and initialization: firstly, a group of particles are randomly generated in
the solution space, the position of each particle represents a potential solution, and the velocity is
initially a random value of zero or small, and then the parameters of the algorithm are set up to
compute the objective function value corresponding to the initial position of each particle.

I1. Setting the data structure: each particle maintains an individual historical optimal position, i.e.,
the Pareto optimal solution found by that particle (pBest); the whole group shares a global historical
optimal solution set, storing the non-dominated solutions found by all particles (gBest).

I11. Iterative search: for each iteration, perform the following steps:

(i) Update velocity and position: the velocity update formula is usually:

Vnew = W * VUgiqg + €1 11 - (pBest — Xp1q) + 3 13 - (gBest — x414) (13)

Where w is the inertia weight, c1 and cz are the learning factor, r1 and r2 are random numbers, and
the position update formula is:

Xnew = Xoid T Vnew (14)

(ii) Evaluate new positions: calculate the objective function value for each new position.

(iif) Update pBest: update pBest if the solution at the new position dominates the pBest of that
particle.

(iv) Update gBest: compare the solution at the new position with the solutions in the gBest set and
update the Pareto front, i.e., add non-dominated solutions and remove dominated solutions.

IV. Pareto frontier maintenance: ensure that the solutions in the gBest set are non-dominated and
maintain the diversity of the set.

V. Termination conditions: check whether the algorithm satisfies the termination conditions, such
as the maximum number of iterations is reached, the quality of the solution meets a predefined
criterion, or the improvement of the solution is below a threshold.

VI. Output result: output the gBest set, i.e. the set of Pareto-optimal solutions found by the
algorithm.
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3. Results and discussion

3.1. Modification of the Steinmetz’s equation

In the previous Methodology section, this study derives the modified Steinmetz equation and plots
the prediction accuracy of the conventional versus modified equations. In order to quantitatively
compare the prediction effects of the two equations, still taking the data of Material I as an example,
this study uses Matlab to calculate the mean square error (MSE), root mean square error (RMSE),
mean absolute error (MAE), mean relative error (MRE), and coefficient of determination (R?) under
the two equations respectively, and a summary of the comparison of the error values is shown in
Table.3.

Table 3. Summary of error values for conventional and modified Steinmetz's equations

Equation Traditonal: Modified:
P = 1.4997 - f1.4296 . 3%4713 P = 4.7383 - f1.4635 . Brzri4485 . T—0.4018
MSE 1638190471.6410 138596508.8086
RMSE 40474.5657 11772.7018
MAE 20615.5353 6850.9815
MRE 0.3566 0.2238
R? 0.9448 0.9953

It is easy to find that the modified Steinmetz's equation has lower MSE, RMSE, MAE, MRE, and
its MSE is about 8.46% of that of the conventional equation, which is reduced by more than 90%, also
its R? is also better than the conventional equation, i.e., the modified Steinmetz's equation constructed
by this paper predicts the core loss with less error and better results.

So this paper can obtain the generalized modified Steinmetz's equation as:

P=k,-fa-Bb.Tv (15)

3.2. Core loss optimization conditions applicable across materials

On the basis of the existing data set and using the genetic algorithm detailed in the previous
Methodology section, this study obtains that the optimal solution that minimizes the core loss is (90°C,
1, 4), i.e., using material 1V, corresponding to a temperature of 90<C, and an excitation waveform that
IS a sine wave.

In this study, this paper considers the independent and synergistic effects of multiple factors on core
loss and applies genetic algorithms to analyze and obtain the optimal solution for minimizing core loss.
The optimization model can be analyzed across different materials and waveforms, compensating for
the limitation to the same material in current research.

3.3. Optimization conditions for Dual-objective magnetic components

By using the particle swarm optimization algorithm based on the core loss prediction model and
the dual-objective optimization model detailed in the previous Methodology section, this paper obtain
the final results as shown in Table.4:

Table 4. Values of the five impact factors under optimal conditions

Impact factor Optimal value
Material type Material 11
Temperature 69.08°C
Frequency 53170.00Hz
Excitation waveform Sine wave
Peak magnetic flux density 0.0245T
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Compared to most of the studies on the performance of magnetic components where only core
losses are considered, this study uses particle swarm optimization (PSO) algorithm to find conditions
that optimize the performance of a magnetic element, considering both core losses and transmitted
magnetic energy. The results show that the model can effectively balance these two objectives,
resulting in a set of optimal conditions that maximize the transmitted magnetic energy while
minimizing the core loss. The values of the influencing factors for the optimum conditions are
determined, thus providing a comprehensive understanding of the impact of each factor on the
performance of the magnetic element.

4. Conclusions

This study first introduces the temperature parameter to correct the Steinmetz equation, then
analyzes the independent and synergistic effects of various factors on the core loss, constructs a model
that can predict the core loss across materials using the random forest algorithm, and finally solves the
conditions of optimal performance of magnetic components using the PSO algorithm by considering
the core loss and the transmitted magnetic energy at the same time. Based on the dataset with huge
sample size, by using multiple machine learning and optimization algorithms, this study is able to
consider more influencing factors and construct a more accurate prediction and optimization model.
However, there are also some shortcomings in this study, such as the random forest algorithm may
lead to overfitting of the model on the training data, and the genetic algorithm has less iterative
termination in this study, which leads to the accuracy is not idealized enough. In the future, this study
will continue to consider more core loss factors, as well as magnetic component performance impact
indicators, and incorporate more algorithms to construct more accurate prediction and optimization
models.
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