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Abstract. Aiming at the regression problem in which the response variable is scalar and the predictor 
variable is functional-type variable, this paper innovatively proposes a functional-type multicore 
Gaussian process regression model based on Kalman filtering. Firstly, a functional principal 
component base expansion method is applied to extract features of functional predictor variables to 
realize the approximate characterization of functional data; then, the potential function between each 
principal component score and the response variable is assigned to the Gaussian process a priori 
and multiple Gaussian process regression submodels are constructed using different kernel 
functions for fitting; finally, the Kalman filtering algorithm is utilized to dynamically integrate the 
results of the submodels to obtain the final Prediction results. Compared with the traditional 
integration learning algorithm, this model integrates the uncertainty estimation into the integration 
framework, fully considers the adaptability of different regenerative kernel Hilbert space from the 
probability level, and significantly improves the robustness and generalization ability of the model. 
Empirical studies on meat and maize near-infrared spectral analysis datasets show that the model 
in this paper exhibits superior prediction performance in both MSE and MAE metrics compared to 
benchmark methods such as traditional machine learning models: XGBoost, single-kernel Gaussian 
process regression (GPR): using RBF kernel function. In addition, the construction of differentiated 
sub-models by adjusting the number of principal component truncations in functional principal 
component analysis provides a new path for model performance optimization. 

Keywords: Functional regression, Gaussian process, functional principal component analysis, 
Kalman filter algorithm. 

1. Introduction 

With the innovation of modern data acquisition technology, a large amount of observational data 

with continuous characteristics have emerged in scientific research and engineering practice. The data 

are not presented in the form of functions defined on a continuous domain, i.e., functional data. This 

kind of data comes from infinite dimensional space, which gives rise to functional linear regression 

models, functional nonlinear regression models, partial functional linear models and other functional 

data regression methods. These methods have shown strong application potential in the fields of 

biomedicine, industrial inspection, and environmental science. In the industrial field, they help the 

early warning of equipment vibration signal failure; in climate research, they can effectively model 

the long-term trend and seasonal fluctuation of temperature and precipitation. This paper focuses on 

the regression scenario where the independent variable is functional and the dependent variable is 

scalar, aiming at proposing a functional multicore Gaussian process additivity model based on 

Kalman filtering to deal with such data more accurately.  

Traditional regression analysis methods often treat functional-type data as high-dimensional data 

and model them using multiple linear regression (MLR), principal component regression (PCR) or 

partial least squares regression (PLSR), but the results are often unsatisfactory. This is because the 

number of variables often far exceeds the sample size after the data is discretised into high-

dimensional vectors, resulting in some models not being able to be solved stably. Although 

dimensionality reduction methods can alleviate this problem, it is still difficult to fully exploit the 

continuity and smoothness characteristics of the data. When functional data are simply treated as 

high-dimensional vectors, their intrinsic structural features are easily ignored, resulting in information 

loss. In order to address the limitations of traditional models, James O. Ramsay and Bernard W. 
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Silverman [1, 2] pioneered the study of functional data and proposed the functional linear model 

(FLM). In recent years, FLM has been continuously developed, and scholars such as Aue and Dubart 

Norinho [3] have realized steady-state functional time series prediction based on it. However, FLM 

assumes a linear relationship between the response and the explanatory variables, which is difficult 

to adapt to the nonlinear relationship that exists among function data, and is prone to significant 

distortion and bias. To address this problem, Bosq and Cuevas [4] explored functional kernel 

regression, while Ferraty and Vieu [5, 6] further introduced the idea of kernel smoothing into the 

theoretical analysis of functional data and established the framework of functional nonlinear 

regression models, and Müller and Yao [7] proposed the framework of nonlinear dynamical systems 

for functional data modeling. Among the nonlinear models, additive models are widely used. 

However, most of the functional regression models, both linear and nonlinear, can only output a single 

prediction, which is difficult to satisfy the demand for uncertainty measures of predicted values in 

engineering and aerospace fields and affects the robustness of the models. Functional Gaussian 

process regression models provide a new direction to solve the above problems by virtue of the 

flexible selection of kernel functions and parameters. Bo Wang [8] and other scholars apply Gaussian 

process methods to nonparametric functional regression with scalar and functional responses, which 

is suitable for mixed multidimensional functional data; Liu Yingying [9] and others propose an 

adaptive Gaussian process kernel function selection model; Hau-Po Hsu [10] and others integrate 

Kalman filtering algorithms into Gaussian process regression models, and the results of these models 

can be predicted by the Gaussian process. Kalman filter algorithm into Gaussian process model 

optimization. However, the existing studies still face the challenges of kernel function selection and 

model integration, and how to construct better function models to realize accurate prediction has 

become an urgent problem.  

Based on this, this paper proposes a functional-type multicore Gaussian process model based on 

Kalman filtering. The model applies the functional principal component basis expansion method to 

extract features from functional predictor variables to realize the approximate characterization of 

functional data. Multiple functional Gaussian process regression sub-models are established by 

considering different kernel functions, and the prediction results (a posteriori mean and variance) of 

the sub-models are inputted into the Kalman filtering algorithm, which realizes the effective fusion 

of the multiple models under the probabilistic perspective, and improves the model robustness. The 

proposed method achieved excellent results in the prediction of physical and chemical indexes of 

meat and corn infrared spectral data, and provided a new effective way for functional data regression 

analysis. 

2. Theory and Methods 

Consider the observed data {𝑌𝑖, 𝑋𝑖(𝑡)}𝑖=1
𝑁  as 𝑁  independently and identically distributed 

samples of {𝑌, 𝑋(𝑡)}. Where Xi(t) is the square-productible random function defined on 𝒯 and 

𝑦𝑖 ∈ 𝑅  is the scalar response variable. Notate the functional principal component score 

corresponding to 𝑋𝑖(𝑡) {𝑎𝑖𝑘 , 𝑘 = 1,2, ⋯ , 𝑛, ⋯ , }, Considering the functional principal component 

score based on standardization, this paper investigates the following functional model: 

𝑌𝑖 = 𝑏0 + ∑ 𝑓𝑘
∞
𝑘=1 (𝑎𝑖𝑘) + 𝜀𝑖                                 (1) 

Functional principal component analysis is used to process the functional predictor variables. 

Although 𝑋(𝑡) should be a linear combination of infinite eigenfunctions in theory, in the actual data 

analysis, 𝑋(𝑡) is often expressed as a linear combination of finite eigenfunctions, and the original 

discrete observation {𝑋𝑖(𝑡𝑗)}  is functionally reconstructed using the form of basis function 

expansion for approximation and reconstruction, to eliminate the measurement noise and to ensure 

the continuity of the function in the form of the following: 

𝑋̂𝑖(𝑡) = ∑ 𝑐𝑖𝑘
𝐾
𝑘=1 𝜙𝑘(𝑡)                                   (2) 
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Where 𝜙𝑘(𝑡) is the pre-selected basis function, 𝑐𝑖𝑘 ∈ 𝑅. Calculate the function mean 𝜇(𝑡) =
1

𝑛
∑ 𝑋̃𝑖

𝑛
𝑖=1 (𝑡), and define the centering function as 𝑋𝑖

′(𝑡) = 𝑋̃𝑖(𝑡) − 𝜇(𝑡). Based on the covariance 

operator 𝐶(𝑠, 𝑡) = 𝐶𝑜𝑣(𝑋𝑐(𝑠), 𝑋𝑐(𝑡)), solve the Fredholm integral equation to extract the principal 

components: ∫ 𝐶
𝒯

(𝑠, 𝑡)𝜓𝑘(𝑠) 𝑑𝑠 = 𝜆𝑘𝜓𝑘(𝑡), 𝑘 = 1,2, …,  wher e 𝜆1 ≥ 𝜆2 ≥ ⋯ ≥ 0  is the 

eigenvalue and {𝜓𝑘(𝑡)}  is the corresponding orthogonal eigenfunction (principal component 

function). Project the centrality function 𝑋𝑖
𝑐(𝑡)  to the first 𝐾  principal component directions: 

𝑎𝑖𝑘 = ∫ 𝑋𝑖
𝑐

𝒯
(𝑡)𝜓𝑘(𝑡) 𝑑𝑡, 𝑘 = 1, … , 𝐾. At this point, the functional data can be approximated as: 

𝑋𝑖(𝑡) ≈ 𝜇(𝑡) + ∑ 𝜉𝑖𝑘
𝐾
𝑘=1 𝜓𝑘(𝑡). Using the principal component scores {𝑎𝑖𝑘} as the input variables 

of the additive model, the following functional model is constructed: 

𝑌𝑖 = 𝛼 + ∑ 𝑓𝑘
𝐾
𝑘=1 (𝜉𝑖𝑘) + 𝜖𝑖, 𝜖𝑖 ∼ 𝒩(0, 𝜎2)                          (3) 

For the above model, in order to make it have an uncertainty measure, each function fj(⋅) obeys 

an independent Gaussian process with zero mean, i.e: 

𝑓𝑗(⋅)~𝐺𝑃(0, 𝑘𝑗)                                       (4) 

Where 𝑘j is the covariance function of the first 𝑗 component, and the prior distributions of each 

fj(⋅)  are independent of each other and of the noise term ϵi . 𝑓𝑗(⋅)~𝐺𝑃(0, 𝑘𝑗),Then the model 

∑ 𝑓𝑗
𝑝
𝑗=1 (⋅) obeys the Gaussian process 𝐺𝑃(0, ∑ 𝑘𝑗

𝑝
𝑗=1 ), In the task of Gaussian process regression 

prediction, it is extremely important to train the hyperparameters, and in the general task, the most 

common kernel function in machine learning, i.e., the squared exponent, is often used. For different 

tasks, the selection of the kernel function will affect the final prediction results of the model. Table 1 

shows the common Gaussian process kernel functions. 

Table 1. Common Gaussian process kernel functions 

Kernel function name math expression 

Square Exponent (SE) Kernel k(x, x′) = σ2exp (−
∥ x − x′ ∥2

2l2
) 

Matérn 3/2 nuclear k(x, x′) = σ2 (1 +
√3 ∥ x − x′ ∥

l
) exp (−

√3 ∥ x − x′ ∥

l
) 

index nucleus 𝑘(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝 (−
∥ 𝑥 − 𝑥′ ∥

𝑙
) 

periodic nucleus 𝑘(𝑥, 𝑥′) = 𝜎2𝑒𝑥𝑝 (−
2𝑠𝑖𝑛2 (𝜋

∥ 𝑥 − 𝑥′ ∥
𝑝

)

𝑙2
) 

Rational quadratic kernel 𝑘(𝑥, 𝑥′) = 𝜎2 (1 +
∥ 𝑥 − 𝑥′ ∥2

2𝛼𝑙2
)

−𝛼

 

linear kernel (math.) 𝑘(𝑥, 𝑥′) = 𝜎𝑏
2 + 𝜎𝑣

2(𝑥 ⋅ 𝑥′) 

Using different kernel functions, different sub-models can be obtained, for which the Kalman 

filtering algorithm is used for fusion. Kalman filtering is a recursive estimation algorithm based on 

the minimum mean square error criterion, and its core idea is to realize the optimal state estimation 

under the noise interference through the state space model of the dynamic system. The algorithm 

gradually optimizes the estimation results through a "prediction-correction" cycle, which mainly 

consists of two recursive phases: based on the state equations of the system and the a posteriori 

estimation of the previous moment, the a priori estimation of the state at the current moment is 

deduced, and at the same time, the state covariance matrix is updated to quantify the prediction 

uncertainty. This phase relies on the dynamic model of the system for state evolution prediction. By 

introducing real-time observations and calculating the Kalman gain matrix to dynamically balance 
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the weights of model predictions and measurements, the a priori estimates are fused with the 

observations to obtain a modified a posteriori estimate. The process simultaneously updates the 

covariance matrix to provide an optimized basis for the prediction at the next moment. The algorithm 

effectively suppresses the interference of system noise and observation noise through the continuous 

iterative prediction and correction process, and realizes highly accurate real-time estimation of the 

dynamic system state. Its recursive nature avoids the data storage burden of traditional batch 

processing methods and is particularly suitable for online estimation scenarios. The core objective of 

the Kalman filter algorithm is to minimize the mean square value of the a posteriori state error through 

recursive estimation, i.e., the optimization objective can be transformed into minimizing the trace of 

the a posteriori estimation covariance matrix 𝑃𝑘|𝑘. Based on this, the optimal Kalman gain at step 𝑘 

can be derived as 

𝐾𝑘 =
𝑃𝑘|𝑘−1𝐻𝑘

𝑇

𝐻𝑘𝑃𝑘|𝑘−1𝐻𝑘
𝑇+𝑅𝑘

                                      (5) 

Where 𝑃𝑘|𝑘−1 is the a priori covariance matrix, 𝐻𝑘  is the observation matrix and 𝑅𝑘  is the 

observation noise covariance matrix. The algorithm is divided into two phases: a priori estimation 

and updating. In the a priori estimation phase, the state estimates and covariance matrices are 

predicted by the following equations: 

𝑋̂𝑘|𝑘−1 = 𝐹𝑘𝑋̂𝑘−1|𝑘−1 + 𝐵𝑘𝑢𝑘 + 𝑤𝑘                             (6) 

𝑃𝑘|𝑘−1 = 𝐹𝑘𝑃𝑘−1|𝑘−1𝐹𝑘
𝑇 + 𝑄𝑘                                (7) 

Where 𝑋̂𝑘−1|𝑘−1 is the optimal state estimation at step 𝑘 − 1, 𝐹𝑘 is the state transfer matrix, 𝐵𝑘 

is the control matrix, 𝑢𝑘 is the control quantity, 𝑤𝑘 ∼ 𝑁(0, 𝑄𝑘) is the process noise, and 𝑄𝑘 is its 

covariance matrix. In the update stage, the actual observations 𝑧𝑘 are used to correct the predictions: 

𝑋̂𝑘|𝑘 = 𝑋̂𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘𝑋̂𝑘|𝑘−1)                            (8) 

𝑃𝑘|𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1                                  (9) 

Where 𝑋̂𝑘|𝑘 is the optimal state estimate at step 𝑘 and 𝑃𝑘|𝑘 is the updated covariance matrix. 

Figure 1 shows the flowchart of the Kalman filtering algorithm. 

 

Figure 1. Kalman filter algorithm flow 

3. Data analysis 

3.1. Data sources and experimental setups 

The dataset used for this experiment was obtained from http://lib.stat.cmu.e-du/datasets/tecator. It 

was obtained from the Tecator Infratec food and feed analyzer, collected by near infrared transmission 
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(NIT) technology in the wavelength range of 850-1050 nm. The data contained 240 meat samples, 

where the functional data consisted of 100-channel NIR absorbance spectra (i.e., predictor variables), 

with absorbance defined as the negative logarithm of the transmittance (. Scalar-type data moisture, 

fat and protein content (response variables) determined by chemical analysis. In this paper, only 

protein content was studied. The second dataset was obtained from the website 

http://www.eigenvector.com/data/Corn/index.html. This dataset included a total of 80 corn samples 

with three sensors, each sensor measurement covering the band range of 1100-2498 nm respectively, 

at 2 nm intervals collection, and 700 absorbance data points. A total of 700 function-type data (i.e., 

predictor variables) from one sensor in the near-infrared spectral data based on maize samples, as 

well as scalar-type data (response variables) of four physicochemical indices, namely, oil, moisture, 

protein, and starch, were investigated. To capture the continuous nature of the spectral data, functional 

data analysis was used to smooth and base-expand the discrete spectra, map the spectral band ranges 

to the standardized intervals t ∈ [0,1]t ∈ [0,1],  Fourier bases were selected to generate basis 

functions to convert the raw spectral data into continuous functional objects to eliminate measurement 

noise and retain the overall morphological characteristics of the spectral curves. Principal component 

analysis was performed on the functional data to reduce the dimensionality of the data and extract the 

key spectral modes, and a low-dimensional feature matrix was generated based on the first 10 

principal components according to the cumulative variance contribution. In order to realize the 

nonlinear modeling of spectral data, a multikernel Gaussian process regression additive model is used, 

and eight kinds of kernel functions are selected to form a collection, including the radial basis kernel 

(RBF), the Matern kernel (with different smoothing parameters), the periodic kernel 

(ExpSineSquared), the linear kernel (DotProduct) and its composite form, forming multiple 

submodels to be trained in parallel. Each model outputs the predicted mean and standard deviation 

for the test samples, and constructs an ensemble of prediction distributions to quantify the uncertainty 

of single-model prediction. To address the heterogeneity and uncertainty of the multi-model 

prediction results, a dynamic fusion strategy based on Kalman filtering is used, in which the predicted 

mean and variance of each model are regarded as a sequence of time-ordered observations, which are 

sequentially input into the Kalman filtering framework. Based on the fusion result of the previous 

model, the a priori estimate of the current state is computed combining the observations and 

confidence level of the current model, and the Kalman gain is adaptively adjusted to update the a 

posteriori mean and covariance. Iteratively fusing all model predictions, the final output a posteriori 

mean is used as the optimized prediction. In order to validate the effectiveness of Kalman filter-based 

multikernel Gaussian process fusion model (Kalman-FMGPR), this study designs multiple sets of 

comparative experiments covering the following: Kalman-FMGPR (the method of this study); 

traditional machine learning models: XGBoost, Random Forest, Support Vector Regression (SVR), 

ElasticNet Network (ElasticNet); single-kernel Gaussian Process Regression (GPR): the RBF kernel 

function is used; the dataset is randomly divided into the training set and the test set in the ratio of 

4:6 (test_size=0.4); the experiments are repeated for 10 times independently to eliminate the effect of 

randomness, and the results are taken as the mean and standard deviation. Besides, this experiment 

also reduces the function type data to high dimensional data for direct modeling. Before performing 

the experiment, the data need to be smoothed. 

3.2. Analysis of experimental results 

After On the meat dataset, using protein as the response variable, this paper compares a number 

of models based on different combinations of feature extraction and modeling methods based on two 

metrics, Mean Squared Error (MSE) and Mean Absolute Error (MAE). The data results are shown in 

Table 2. 
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Table 2. Comparison of model prediction errors based on the meat dataset 

Model name mean square error absolute error 

Kalman-FMGPR 0.0545 0.1585 

FPCA+XGBoost 0.1769 0.2706 

FPCA+RF 0.1657 0.2727 

FPCA+SVR 0.2206 0.3100 

FPCA+ElasticNet 0.6089 0.6527 

FPCA+GPR 0.8256 0.7187 

PCA+XGBoost 0.2638 0.3582 

PCA+RF 0.2207 0.3229 

PCA+SVR 0.2963 0.3603 

PCA+ElasticNet 0.6283 0.6643 

PCA+GPR 0.3780 0.4355 

Figure 2 presents the distribution of box-and-line plots for each model on the two indicator 

dimensions. 

 

Figure 2. Model prediction error boxplot based on meat dataset 

In terms of overall performance, the model constructed based on the FPCA feature extraction 

method is overall better than the model based on the traditional PCA.The Kalman-FMGPR model 

significantly outperforms the rest of the models in both evaluation metrics, showing the smallest error 

value and the most stable prediction performance. Specifically, the model is at the lowest level in 

both MSE and MAE dimensions, and the box-and-line plot has a compact distribution with no 

obvious outliers, indicating good stability and robustness. This result verifies the effectiveness of the 

model in the synergistic optimization of feature extraction and nonparametric regression modeling, 

highlighting its role in predicting meat proteins under the scenario. Among them, the three combined 

models, FPCA+XGBoost, FPCA+RF and FPCA+SVR, follow Kalman-FMGPR in terms of MSE 

and MAE, demonstrating low error values and relatively stable prediction ability. In contrast, 

FPCA+ElasticNet and FPCA+GPR perform poorly in both metrics, with higher errors and less 

stability, and suffer from a lack of adaptability. Especially in PCA+ElasticNet with PCA+GPR, the 
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error metrics are significantly high, further indicating that FPCA is more advantageous in retaining 

critical information in functional data structures. In summary, the Kalman-FMGPR model performs 

optimally among all the participating models, with smaller error, higher stability, and stronger 

generalization ability. 

In order to evaluate the performance of various modeling approaches in the task of predicting 

maize protein content in the maize dataset, this paper compares and analyzes ten different sets of 

model combinations, using the mean square error (MSE) and the mean absolute error (MAE) as 

evaluation metrics. The data results are shown in Table 3. 

Table 3. Comparison of model prediction errors based on corn dataset 

Model name MSE MAE 

Kalman-FMGPR 0.1547 0.2936 

FPCA+XGBoost 0.3153 0.4445 

FPCA+RF 0.2860 0.4076 

FPCA+SVR 0.3277 0.4469 

FPCA+ElasticNet 0.6899 0.6618 

FPCA+GPR 0.9218 0.7823 

PCA+XGBoost 0.4775 0.5401 

PCA+RF 0.4055 0.4928 

PCA+SVR 0.2644 0.4013 

PCA+ElasticNet 0.6899 0.6618 

PCA+GPR 0.9218 0.7823 

Figure 3 presents the distribution of box-and-line plots for each model on the two indicator 

dimensions. 

 

Figure 3. Box line plot of model prediction error based on meat dataset 

Overall, the Kalman-FMGPR model has the most superior performance among all the participating 

models, as it achieves the lowest values in both MSE and MAE, and the error level is significantly 

lower than that of other models. Meanwhile, the boxplot of this model has a small fluctuation range 

and almost no outliers, showing high stability and robustness. The above performance indicates that 
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the Kalman-FMGPR model possesses excellent fitting accuracy and generalization ability in dealing 

with the problem of maize protein content prediction. The comparison reveals that the overall 

performance of the model with FPCA feature extraction strategy is better than that of the model based 

on traditional PCA. In particular, FPCA+XGBoost, FPCA+RF, and FPCA+SVR maintain low errors 

in MSE and MAE, which is the second best performance, and the prediction results are more stable. 

This indicates that FPCA can capture the functional change features in the data more effectively, thus 

providing a more discriminative feature space for regression modeling. On the other hand, 

FPCA+ElasticNet and FPCA+GPR perform poorly, with large errors in both metrics and poor 

stability, suggesting that their modeling approaches have limited adaptability under the current feature 

structure. The overall prediction errors of the models with traditional PCA combinations are generally 

high, especially PCA+ElasticNet and PCA+GPR, which are at a disadvantage in both MSE and MAE, 

which confirms that the advantages of FPCA are more obvious in this kind of high-dimensional and 

structurally complex data. In summary, the Kalman-FMGPR model shows optimal comprehensive 

performance in the protein content prediction task, which not only has significant advantages in error 

control, but also excels in model stability and generalization ability. 

On both datasets, FPCA+GPR performs the worst, but when looking at the data as high 

dimensional data data, i.e., the PCA+GPR model performs relatively well, which suggests that when 

a single kernel is taken, it is difficult for GPR to adapt to the data structure and continuity, and 

moreover illustrates the necessity of combining kernel functions. 

4. Conclusion 

In In this paper, we focus on the complex data scenario in which the response variable is scalar 

and the predictor variable is functional, and innovatively construct a Kalman filter-based functional 

multikernel Gaussian process additivity model to address the uncertainty measure of the response 

variable and the difficulty of selecting the kernel function of the Gaussian process. In practical 

applications such as meat and corn datasets analyzed by near-infrared spectroscopy, this kind of 

functional data is common, and it is difficult for traditional regression methods to accurately capture 

the characteristics of the data, and this model is committed to achieving high-precision prediction of 

physical and chemical indicators.  

In the process of model construction, functional principal component analysis (FPCA) is firstly 

used to deal with the function-based predictor variables. Approximating and reconstructing the 

original discrete observation data through basis function expansion not only eliminates the 

measurement noise effectively, but also ensures the continuity of the function. Specifically, the mean 

of the function is calculated to achieve data centering, and then the principal components are extracted 

by solving the Fredholm integral equation, and the principal component scores are used as the input 

variables of the additive model to complete the feature extraction and dimensionality reduction of the 

data. When constructing the functional additive model, each additive component is regarded as an 

independent Gaussian process with zero mean value, and multiple functional Gaussian process 

regression additive sub-models are constructed based on different kernel functions to fully explore 

the nonlinear features of the data. Finally, the prediction results (mean and variance) of the sub-

models are fused using Kalman filtering algorithm to realize the efficient integration of the models, 

so as to output the accurate prediction results containing uncertainty measures.  

From the perspective of application expansion, the model can be extended to more fields in the 

future, such as biomedicine, industrial testing, environmental science and so on. In biomedicine, it is 

used to analyze protein structure data and dynamic change curves of disease markers. The use of 

electroencephalography (EEG) signal analysis allows for real-life brainwave monitoring of epileptic 

patients and seizure prediction based on it.; in the field of industrial testing, it helps to diagnose 

abnormalities in the monitoring data of the operating status of equipment. In performing aircraft 

engine vibration monitoring and fault prediction, early warning of aero-engine blade cracks can be 

achieved through the vibration acceleration curves collected by multiple sensors.; and in 
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environmental science, it is used to deal with the long-term trend prediction of meteorological data 

and water quality monitoring data. The effectiveness and adaptability of the model is further verified 

through practical application in different scenarios. 

At the level of model optimization, parameter selection and kernel function optimization need to 

be studied in depth. Different combinations of parameter settings and kernel functions can 

significantly affect the model performance, and the optimal parameter combinations can be explored 

through intelligent optimization algorithms such as Bayesian optimization and genetic algorithms; at 

the same time, new types of kernel functions can be designed by combining the data characteristics 

or adopting a multi-core fusion strategy in order to enhance the model's ability to fit the complex data. 

By systematically optimizing the key factors, the prediction accuracy, stability and generalization 

ability of the model can be improved, so that it can have stronger reliability in the complex data 

environment and provide more solid technical support for practical applications. 
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