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Abstract. To enhance the organizational efficiency and cultural presentation effectiveness of the 
folk activity "Bench Dragon", this paper focuses on the dynamic optimization problem of the Bench 
Dragon's "panlong" (coiling) movement. A chain path optimization modeling method based on plane 
geometric recursion and kinematic constraints is proposed: First, an Archimedean spiral model is 
constructed to characterize the movement trajectory of the dragon head. The spatiotemporal 
coordinates and velocity distribution of each dragon body segment are systematically derived using 
differential-integral methods. For collision constraints during movement, a safety distance verification 
model in polar coordinate space is established. Combined with the bisection method and iterative 
algorithms, the critical coiling time is accurately solved. Under the constraint of turn space, the 
minimum safe pitch is determined through parameter optimization. The quantitative model system 
constructed in this study provides a scientific dynamic analysis framework and optimization strategy 
support for improving the coordination and spectacle of the dragon dance performance.  

Keywords: Path Optimization, Bisection Method, Iterative Method, Arc Differential, Polar 
Coordinates.  

1. Introduction 

As the carrier of traditional folk culture, the multi-segment chain structure of ' bench dragon ' faces 

the problems of high risk of dragon body collision and insufficient track fluency in the performance. 

The current empirical path design has been difficult to meet the needs of modern cultural performance 

[1]. The field of path planning has formed a mature system in robot control and UAV motion planning: 

Hao et al. [2] summarized the dynamic obstacle avoidance algorithm in intelligent vehicle path 

planning, and Zhou et al. [3] systematically analyzed the topology optimization technology of UAV 

motion planning. However, the research on path planning in folk activities is special: Liu et al. [4] 

introduced the Archimedes spiral into the bench dragon trajectory modeling, but did not consider the 

dragon body dynamics coupling; li Yuhang et al. [5] recorded actions by motion capture, but did not 

construct an optimization model that integrates cultural performance and physical constraints.  

The existing research is limited to the single constraint dimension and does not integrate the 

morphological requirements of cultural movements such as 'spiral winding'; the dynamic modeling is 

insufficient, and the quantitative analysis of the velocity distribution of the dragon body is lacking. 

Lack of cultural adaptability, the 'ornamental-coordination' quantitative evaluation system has not 

been established. 

Based on the actual needs of bench dragon performance, this paper constructs a dragon head 

trajectory model based on Archimedes spiral, realizes the dynamic modeling of dragon body nodes 

through plane geometry recursion, establishes a polar coordinate safety distance test model, and 

integrates collision avoidance and cultural action norms. A closed-loop framework of ' kinematics 

analysis-collision inspection-parameter optimization ' is formed by combining dichotomy and 

iterative algorithm, which provides a quantitative optimization tool for intangible cultural heritage 

activities. 
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2. Position and Velocity Model for the Bench Dragon Handle Centers 

2.1. Establishment of the Polar Coordinate Equation and Position Parametric Equation for 

the Archimedean Spiral 

The overall movement path of the "Bench Dragon" presents a disk-like shape, coiling clockwise 

along an equiangular spiral with pitch c, conforming to the Archimedean spiral pattern. It is also 

assumed that the velocity a of the dragon head's front handle remains constant throughout the entire 

coiling process [6]. Therefore, determining the time and velocity of the head's front handle movement 

is necessary to calculate the position and velocity of the dragon body and tail. The polar coordinate 

equation and position parametric equation [7] for the head's front handle are thus listed:  

𝑟 = 𝑎 + 𝑏1𝜃 (1) 

{
𝑥 = 𝑏1𝜃𝑐𝑜𝑠𝜃
𝑦 = 𝑏1𝜃𝑠𝑖𝑛𝜃

(2) 

where, for reasonable model simplification, the starting point distance a from the polar coordinate 

center in the Archimedean spiral polar equation is assumed to be 𝑎 = 0. The pitch b controlling the 

distance between spiral turns is set as 𝑏1 =
𝑐

2𝜋
 . 

2.2. Establishment of the Polar Coordinate Formula for the Arc Differential of the Dragon 

Head's Front Handle 

Since the dragon head's travel speed is constant, the linear velocity of its front handle is also 

constant. The change in arc length of the equiangular spiral is related to the change in 𝜃 . The 
relationship between 𝜃 and 𝑡0 is obtained by establishing the polar coordinate formula for the arc 
differential [8]: 

ds = √r2 + (r′)2d (3) 

where 𝑑𝑠 = 𝑣0𝑑𝑡. Integrating both sides of equation (3) yields, 

∫ 𝑎𝑣0

𝑡0

0

𝑑𝑡 = ∫ √𝑟2 + (𝑟′)2𝑑𝜃
32𝜋

𝜃

(4) 

𝑎𝑣0𝑡0 =
1

2
𝑏1(𝜃√𝜃2 + 1 + ln |𝜃 + √𝜃2 + 1|) |

32𝜋
𝜃
                                             (5) 

thus, the calculation equation for 𝜃 with respect to 𝑡: 

1

2
𝑏 (𝜃√𝜃2 + 1 + 𝑙𝑛 |𝜃 + √𝜃2 + 1|) = 442.590256 − 𝑎𝑡0 (6) 

2.3. Establishment of the Polar Coordinate Formula for the Arc Differential of the Dragon 

Body's Front Handle and the Dragon Tail's Rear Handle 

Due to the dragon's structure being connected head-to-tail with a pulling effect, and considering 

the different lengths of the head and other parts, the special cases of the first body segment's front 

handle and the tail's rear handle need to be addressed. First, establish the polar coordinate formula for 

their arc differentials:  

1

2
𝑏 (𝜃𝑛√𝜃𝑛

2 + 1 + 𝑙𝑛 |𝜃𝑛 +√𝜃𝑛
2 + 1|) = 442.590256 − 𝑎𝑡𝑛 (7) 

2.4. Establishment of the Velocity Equation for the Dragon Handles 

Given the relationship between 𝜃 and 𝑡 for all parts of the dragon from equation (7), establish 
the velocity equation for the handles by differentiating position: 
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𝑣 = √𝑣𝑥2 + 𝑣𝑦2 (8) 

where 𝑣𝑥 =
𝑥(𝑡)

𝑑𝑡
, 𝑣𝑦 =

𝑦(𝑡)

𝑑𝑡
  

3. Collision Constraint Model for the "Bench Dragon" 

3.1. Determination of the Dragon Head Front Handle Collision Time 

If the dragon team moves to the center of the spiral, the coiling path of the head's front handle 

follows formula (6). Collision occurs when 𝜃 = 0. Substituting 𝜃 = 0 into formula (6) determines 
the termination time 𝑡𝑚𝑎𝑥 for coiling to prevent collisions between benches. By testing whether a 
collision occurs at a set coiling start time 𝑡𝑚𝑖𝑛, and if no collision occurs, use the bisection method 
to find the head front handle collision time [9]:  

tmid =
tmax + tmin

2
(9) 

3.2. Determination of Collision Constraint Conditions 

Substitute 𝑡𝑚𝑖𝑑 into formula (6) to obtain the polar angle 𝜃1 of the head's front handle. Then 
substitute 𝜃1 into the position parametric equation to get the head front handle's position (x0, y0). 
Establish a circle centered at (x0, y0) (point O) with radius 𝑟1 equal to the distance from the head 
front handle to the outer edge point of the front bench board.  

Since the polar angle for an adjacent bench segment on the spiral coil is 𝜃1 + 2𝜋, substitute 𝜃1 +
2𝜋 into the position parametric equation to get the position (x1, y1) of a point on that adjacent coil 
segment. Using the arc differential formula for the body front handle and tail rear handle combined 

with the position parametric equation and iterative methods, obtain the positions of the front and rear 

handles (x2, y2), (x3, y3) of the corresponding bench on that coil segment.  

Establish the formula for the distance from point O to the line formed by the front and rear handles 

of the adjacent bench:  

l =
|kx0 − y0 + c|

√k2 + 1
(10) 

where k =
y3−y2

x3−x2
, c = y2 − kx2. 

3.3. Establishment of the Collision Constraint Threshold 

To prevent collisions between adjacent benches on the spiral coil, establish the distance formula 

from center O to the line formed by the adjacent bench's handles. Ensure this distance is always 

greater than the set safety threshold 𝑑𝑚𝑖𝑛 = 𝑟1. Thus: 

{
𝑙 > 𝑑𝑚𝑖𝑛
𝑙 ≤ 𝑑𝑚𝑖𝑛

(11) 

4. Turn Path Optimization Model for the "Bench Dragon" 

4.1. Establishment of the formula for the position of the ' bench dragon ' handle 

The pitch changes, preventing the head front handle from coiling out starting from the initial point. 

A reasonable pitch range needs to be assumed to derive the polar coordinate formula for the head 

front handle. By testing for collisions when coiling into this circle: 
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𝜃2 =
2𝑟1π

p
(12) 

where p is the pitch and 𝑟1 is the turn space radius. Substitute 𝜃2 into formula (2) to get the head 
front handle coordinate formula at this point:  

{
 

 𝑥 = 𝑟1𝑐𝑜𝑠
2𝑟1π

p
 

𝑦 = 𝑟1𝑠𝑖𝑛
2𝑟1π

p
 

(13) 

Because the dragon body always maintains a pulling state with the head, differentiate the head 

front handle coordinate formula to obtain the arc differential formula for the body front handle and 

tail rear handle coiling out:  

1

2
𝑏2(𝜃

′
2√𝜃′2 + 1 + 𝑙𝑛|𝜃

′
2 +√𝜃′2 + 1|) −

1

2
𝑏2(𝜃2√𝜃2 + 1 + 𝑙𝑛|𝜃2 +√𝜃2 + 1|) = 𝑡𝑛 (14) 

4.2. Dragon Head turn Curve Optimization Model 

In this study, the structure of the current turn curve is first analyzed. The turn space is defined as a 

circular area centered at the spiral center with a diameter of 2𝑟1 meters. The turn curve consists of 
two tangent circular arcs. Let the radius of the first arc be R, and the radius of the second arc be 2R. 

The tangent point P is key, ensuring the arcs are tangent at P. To achieve this, let the center of the first 

arc be 𝑂1 and the center of the second arc be 𝑂2. The tangency condition requires that at point P, 
|𝑂1P| = R and |𝑂2P| = 2R[10]. 

The length L of the turn curve consists of the lengths of the two arcs:  

L = 𝜃1𝑅 + 𝜃2(2𝑅) (15) 

where 𝜃1  and 𝜃2  are the radian measures of the first and second arcs, respectively. The 
optimization goal is to adjust the values of R, 𝜃1, and 𝜃2 to minimize the curve length L. To maintain 
the tangency relationship, the distance between the center 𝑂1 of the first arc and the center 𝑂2 of 
the second arc should be: 

|𝑂1𝑂2| = R + 2R = 3R (16) 

And the turn curve must be contained within the turn space of 2𝑟1 meters. 

5. Velocity Optimization Model for the "Bench Dragon" Path 

5.1. Determination of the Dragon Head's Initial Position 

Assume the minimum travel speed of the dragon head is 𝑣𝑚𝑖𝑛, and the travel speeds of all handles 
are limited to a certain range. Thus, assume the maximum travel speed of the head is 𝑣𝑚𝑎𝑥. Using 
the bisection method: 

𝑣𝑚𝑖𝑑 =
𝑣𝑚𝑎𝑥 + 𝑣𝑚𝑖𝑛

2
(17) 

When the dragon head moves to a point tangent to the spiral and the turn space, from the polar 

coordinate equation: 

𝑟2 = 𝑏3𝜃3 =
𝑝

2𝜋
𝜃3 (18) 

where 𝜃3 =
2𝑟1𝜋

𝑝
. 

Assume that when the head coils in from a certain point for 𝑡𝑥 seconds, it reaches the tangent 
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point. Establish the arc differential equation for the head at this point: 

∫ 𝑣0

𝑡𝑥

0

𝑑𝑡 =
1

2
𝑏3(𝜃√𝜃2 + 1 + ln |𝜃 + √𝜃2 + 1|) |

𝜃0
𝜃3

(19) 

From this, the value of 𝜃0 can be obtained. 

5.2. Establishment of Position Equations for the Dragon Body and Tail 

Establish the arc differential equations for the body and tail based on their relationship with the 

head: 

∫ 𝑣0

𝑡1

0

𝑑𝑡 =
1

2
𝑏3 (𝜃√𝜃2 + 1 + 20) ln |𝜃 + √𝜃2 + 1|) |

𝜃4
𝜃0

(20) 

Solving the system of arc differential equations and position parametric equations for the body and 

tail allows determining the maximum travel speed of the dragon head. 

6. Simulation Verification 

6.1. Solving and Analysis of Bench Dragon Handle Position-Velocity 

Set the "Bench Dragon" team coiling clockwise along an equiangular spiral with a pitch of 55 cm, 

with all handle centers located on the spiral. The travel speed of the dragon head's front handle 

remains constant at 1 m/s. Initially, the dragon head is located at point A on the 16th turn of the spiral, 

as shown in Figure 1. Solve the positions and velocities of all 223 dragon handles from the initial 

moment to 300 seconds. Partial calculation results are shown in Table 1 and Table 2. 

 

Figure 1. Equiangular Spiral Path Diagram of the "Bench Dragon" 

Solve by combining the polar coordinate formula for the head front handle arc differential with 

the Archimedean parametric equations. Similarly, combine the polar coordinate formulas for the body 

front handle and tail rear handle arc differentials with the Archimedean parametric equations and the 

handle velocity equation. Perform recursive calculations sequentially for each handle. The position-

velocity model is as follows: 
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{
 
 
 
 
 
 

 
 
 
 
 
 𝑏1 =

55

2𝜋
𝑥 = 𝑏1𝜃𝑐𝑜𝑠𝜃
𝑦 = 𝑏1𝜃𝑠𝑖𝑛𝜃

1

2
𝑏 (𝜃√𝜃2 + 1 + 𝑙𝑛 |𝜃 + √𝜃2 + 1|) = 442.590256 − 𝑡0

1

2
𝑏 (𝜃𝑛√𝜃𝑛

2 + 1 + 𝑙𝑛 |𝜃𝑛 +√𝜃𝑛
2 + 1|) = 442.590256 − 𝑡𝑛

n = 1，2，3…，223
𝑡𝑛 = 𝑡0 + (341 − 55) + (𝑛 − 1)(220 − 55)

𝑣 = √𝑣𝑥
2 + 𝑣𝑦

2

(21) 

 

Table 1. Dragon Handle Position Results (meters) 

Handle 0 s 60 s 120 s 180 s 240 s 300 s 

Head x 8.800000 5.799209 4.084887 2.963609 2.594494 4.420274 

Head y 0.000000 5.771092 6.304479 6.094780 5.356743 2.320429 

1st Body x 8.622662 6.966369 -2.424855 -4.517861 4.131347 3.298456 

1st Body y 1.848057 -4.328007 -7.132913 5.083686 -4.322460 3.790644 

51st Body x -9.287429 -8.287606 -4.607061 3.958921 5.205986 -6.045432 

51st Body y 2.439659 3.608338 7.069356 6.710003 -4.805352 1.772887 

101st Body x 1.725946 4.622168 4.259952 0.575445 -5.944569 -5.275038 

101st Body y -10.181951 -8.647703 -8.215608 -8.649194 -5.412775 5.128983 

151st Body x 10.991205 7.651414 3.703487 2.427648 4.362726 7.767234 

151st Body y 0.535970 7.214280 9.293563 9.148161 7.748884 2.871407 

201st Body x 5.779766 -5.421239 -10.328742 -9.809815 -8.385764 -8.335228 

201st Body y 10.105990 9.779723 2.801072 -2.791522 -4.816659 -3.679872 

Tail (Rear) x -6.516921 6.191176 10.974688 8.415401 4.784437 3.561335 

Tail (Rear) y -9.971026 -9.646607 -0.663321 6.289748 8.774122 8.757234 
 

Table 2. Dragon Handle Velocity Results (m/s) 

Handle 0 s 60 s 120 s 180 s 240 s 300 s 

Head 0.987989 0.988376 1.003551 1.001643 0.998191 1.000484 

1st Body 1.003760 0.991998 1.007979 0.997440 1.005170 0.996122 

51st Body 0.984434 0.994135 1.001507 1.003199 1.005158 0.994945 

101st Body 0.998144 1.005560 1.000264 0.996620 0.973038 1.001152 

151st Body 0.995499 0.995017 1.006321 0.986236 1.002408 1.004613 

201st Body 1.011088 0.996718 1.004456 0.985461 0.995840 1.004784 

Tail (Rear) 0.991975 1.007442 1.003895 0.992510 0.993507 0.989878 

6.2. Collision Verification Calculation for the "Bench Dragon" 

6.2.1. Determination of the Dragon Head Front Handle Collision Time 

The dragon team coils along the spiral set above. If the team moves to the spiral center, the head 

front handle's coiling path follows formula (6). Collision occurs when 𝜃 = 0. Substituting 𝜃 = 0 
into formula (6) yields the coiling termination time 𝑡𝑚𝑎𝑥 = 442.590256 seconds. By testing, it is 
found that no collision occurs at 𝑡𝑚𝑖𝑛 = 300 seconds. 
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6.2.2. Solving for Collision-Free Coiling of the "Bench Dragon" 

According to formulas (9) and (10), substitute the collision time and collision conditions into the 

collision constraint model formula (11). Use the bisection method and iterative computation to make 

𝑡𝑚𝑖𝑑  infinitely approach the moment 𝑡𝑚𝑎𝑥 = 𝑡𝑚𝑖𝑛 . Stop the iteration when 𝑡𝑚𝑎𝑥 − 𝑡𝑚𝑖𝑛  10
−6 

seconds, yielding: 

𝑡𝑚𝑖𝑑 = 𝑡𝑚𝑖𝑛 (22) 

where 𝑟1 is calculated by the Pythagorean theorem as 𝑟1 = 0.31 meters.Use the polar coordinate 
formula for the body front handle and tail rear handle arc differentials combined with the position 

parametric equation to obtain the dragon team's position and velocity at this time. Verification shows 

the collision-free termination time is 𝑡𝑚𝑖𝑑 = 𝑡𝑚𝑖𝑛  379.4008 seconds. 

6.3. Dragon Head turn Curve and Shortest Path Solution 

6.3.1. Solving for the Minimum Collision-Free Pitch for Coiling Out 

Set the "Bench Dragon" transitioning from coiling in to coiling out. The team switches from 

clockwise coiling in to counter-clockwise coiling out, requiring a turn space. If the turn space is a 

circular area centered at the spiral center with a diameter of 9 m, as shown in Figure 2, determine the 

minimum pitch p such that the head front handle can coil along the corresponding spiral to the 

boundary of the turn space. 

 

Figure 2. Schematic Diagram of the "Bench Dragon" turn Space 

Determine the head front handle's position at any time using formulas (12) and (13): 

𝜃2 =
9π

p
(23) 

where p ∈ (30,55)  is the pitch. Substitute 𝜃2  into formula (2) to get the head front handle 
coordinate formula: 

{
 

 𝑥 = 4.5𝑐𝑜𝑠
9π

p
 

𝑦 = 4.5𝑠𝑖𝑛
9π

p
 

(24) 

Combine the arc differential formula for the body front handle and tail rear handle coiling out with 

the position coordinate equations to obtain their positions. 

1

2
𝑏2(𝜃

′
2√𝜃′2 + 1 + 𝑙𝑛|𝜃

′
2 +√𝜃′2 + 1|) −

1

2
𝑏2(𝜃2√𝜃2 + 1 + 𝑙𝑛|𝜃2 +√𝜃2 + 1|) = 𝑡𝑛 (25) 
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Since the head's initial turn position on the turn space circle is already determined, at this point: 

𝑡𝑛 = (341 − 55) + (𝑛 − 1)(220 − 55) (26) 

Based on collision constraint conditions and the threshold, using the bisection method and iterative 

computation, stop iteration when 𝑝𝑚𝑎𝑥 − 𝑝𝑚𝑖𝑛  10
−6  to find the minimum pitch 𝑝 = 𝑝𝑚𝑖𝑛 =

0.52871m. 

6.3.2. Solving for the Shortest Path of the Dragon Head turn Curve 

Set the pitch of the coiling-in spiral to 1.7 m. The coiling-out spiral is centrally symmetric to the 

coiling-in spiral about the spiral center. The dragon team completes the turn within the defined turn 

space. The turn path is an S-shaped curve composed of two tangent circular arcs. The radius of the 

first arc is twice that of the second. It is tangent to both the coiling-in and coiling-out spirals. By 

adjusting the arcs while maintaining tangency, solve for the shortest turn path. 

According to formulas (15) and (16), adjust the value of R within a certain range. Verified, it is 

reasonable to assume 𝑅 = [1, 3]𝑚 and 𝜃1 𝜃2 = [0, π]. This paper adopts a grid search method to 
traverse all combinations of R, 𝜃1, and 𝜃2. For each parameter set, calculate the turn curve length L. 
Record the curve length for each set and find the minimum length and its corresponding parameter 

combination: 𝐿𝑚𝑖𝑛 14.1372m, achieving the shortest path optimization for the turn curve. 

6.4. Solving the "Bench Dragon" Path Velocity 

In the bench dragon performance, it is very important to determine the maximum speed of the 

dragon head, which not only ensures that the speed of each handle does not exceed the limit, avoids 

the dancer 's out of control due to excessive centrifugal force or the disconnection of the dragon body, 

but also allows the dragon shape to maintain a smooth curve when marching and turning, fits the 

rhythm, and at the same time, unifies the rhythmic beauty and safety of traditional folk performances. 

Set the travel speed of the dragon team's head front handle to remain constant at 1 m/s. Determine the 

maximum travel speed of the dragon head such that the speed of all handles does not exceed 2 m/s. 

Assume the minimum travel speed of the head is 𝑣𝑚𝑖𝑛 = 1𝑚/𝑠. Stipulate that the travel speed of 
all handles does not exceed 2 m/s. Therefore, assume the maximum travel speed of the head is 

𝑣𝑚𝑖𝑛 = 3𝑚/𝑠. 
When the head moves to the tangent point between the spiral and the turn space, from the polar 

coordinate equation: 

𝑟2 = 𝑏3𝜃3 =
1.7

2𝜋
𝜃3 (27) 

where 𝜃3 =
9𝜋

1.7
. 

Assume the head coils in from a certain point for 20 seconds to reach the tangent point. Establish 

the head arc differential equation at this point: 

∫ 𝑣0

20

0

𝑑𝑡 =
1

2
𝑏3 (𝜃√𝜃2 + 1 + |𝜃 + √𝜃2 + 1|) |

𝜃4
𝜃0

(28) 

Differentiating the position parametric equation obtained by combining the arc differential 

equations and position parametric equations for the body and tail yields the head's velocity. When: 

{
𝑣𝑚𝑖𝑑 > 2         𝑣𝑚𝑎𝑥 = 𝑣𝑚𝑖𝑑   
𝑣𝑚𝑖𝑑 ≤ 2       𝑣𝑚𝑖𝑛 = 𝑣𝑚𝑖𝑑

(29) 

where 𝑡1 = 20 + (341 − 55) + (𝑛 − 1)(220 − 55) . Use the bisection method and iterative 
computation to find the head's maximum travel speed. Stop iteration when 𝑣𝑚𝑎𝑥 − 𝑣𝑚𝑖𝑛 = 10−12, 
yielding the head's maximum travel speed 𝑣 = 1.957533𝑚/𝑠. 
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7. Conclusions 

Simulation verification demonstrated that the model can precisely calculate the position and 

velocity distribution of a 223-section dragon body from the initial state up to 300 seconds. To address 

collision constraints, a safety distance verification model was constructed within the polar coordinate 

space. Combining the bisection method and an iterative algorithm, the critical coiling time was solved, 

determining the coiling termination time at 379.4008 seconds, effectively preventing body collisions. 

For the turning space constraint, the minimum safe spiral pitch of 0.52871 meters was determined 

through parameter optimization. Based on a two-segment tangent circular arc model, the turning 

curve was optimized, achieving a shortest path reduction of 14.1372 meters. The velocity 

optimization model employed the bisection method to constrain the dragon head's speed range, 

ultimately determining the maximum safe travel speed as 1.957533 m/s. 

The research established a closed-loop framework of "geometric modeling-constraint verification-

algorithm optimization". This framework pioneers the quantitative dynamic analysis of folk 

performance movements, providing a path planning solution for bench dragon performances that 

balances scientific rigor and cultural adaptability. The results not only enhance the coordination and 

spectacle of the dragon dance performance but also advance the integration of traditional intangible 

cultural heritage activities with modern optimization algorithms. This work provides quantifiable 

technical support and a scientific analytical paradigm for the innovative preservation of intangible 

cultural heritage. 
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