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Abstract. Accurately predicting Olympic medal counts for each country is of significant value for 
shaping sports policy, optimizing resource allocation, and advancing the sports industry. This study 
presents a predictive model based on the Extreme Gradient Boosting (XGBoost) algorithm to 
estimate the number of gold, silver, and bronze medals awarded to each country in the Olympics. 
The validity of the model is demonstrated by predicting the medal counts for the 2024 Olympics. 
Relevant data from 1896 to 2024 were collected and preprocessed. Five key features were extracted 
for each Olympic edition: the host country, the number of gold, silver, and bronze medals, the total 
medal count, the number of athletes per country, the gender distribution of athletes, and the sports 
events in which each country participated. Data from 1896 to 2012 were used for training, while data 
from the 2016 and 2020 Olympics were used as the test set. The model was trained using the 
XGBoost algorithm, and optimization was performed by minimizing the root mean square error 
(RMSE). Four features for the 2024 Olympics—host country, number of participating athletes, 
gender distribution of athletes, and the sports events contested—were used to predict the medal 
counts for each country. By comparing the predicted results with the actual data, the RMSE values 
for gold, silver, bronze, and total medals were calculated to be 0.6462, 0.5547, 0.2965, and 0.3922, 
respectively. These results validate the exceptional performance of the XGBoost model in predicting 
Olympic medal counts, providing effective and forward-looking strategic insights for the optimization 
of sports resource allocation and the setting of competitive goals across countries. 
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1. Introduction 

The Olympic Games are the most widely followed multi-sport event globally. The results of these 

competitions not only reflect the sports training systems and talent reserves of different countries but 

also serve as indicators of a nation's overall strength. Accurate predictions of Olympic medal counts 

can provide valuable insights for sports management organizations and policymakers. These forecasts 

can help optimize resource allocation and guide the establishment of competitive goals. The ability 

to make such predictions is critical for strategic planning and decision-making in the sports industry. 

In the field of Olympic medal prediction, machine learning and regression models are widely 

adopted, with the Random Forest (RF) algorithm being one of the most common in machine learning. 

Dai et al. applied the Autoregressive Integrated Moving Average (ARIMA) model to perform time 

series analysis on historical Olympic data, predicting medal trends across different countries [1]. They 

then integrated historical data with ARIMA forecasts and employed RF to make the final medal count 

predictions. Ran et al. initially used the Fuzzy Cognitive Concept Learning model to establish a fuzzy 

rule base, extracting valuable granular information from historical Olympic data [2]. Subsequently, 

they applied the Transformer model for predicting Olympic medal counts. Yang et al. utilized 

DeepForest for medal prediction, leveraging feature data from Long Short-Term Memory to enhance 

prediction accuracy through multi-layer feature learning [3]. Li et al. first applied the Probit 

Regression model for binary classification to identify countries likely to win medals [4]. For the 

countries predicted to win, the Tobit Regression model was employed to predict the number of medals 

won. Despite these approaches, XGBoost has been rarely applied in the context of Olympic medal 

prediction. 

XGBoost, as an ensemble learning algorithm in machine learning, demonstrates strong feature 

extraction capabilities. It excels in handling complex and high-dimensional data, nonlinear modeling 
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scenarios, and preventing overfitting. In comparison to RF, XGBoost has superior training time and 

prediction speed on the same dataset, making it suitable for real-time applications [5]. He et al. 

employed the XGBoost regression model to predict voltage stability margin (VSM) by using 

operational states of power systems (such as node voltage, current, and line power) as input features, 

with the corresponding voltage stability margin as the regression target [6]. Bi et al. used XGBoost 

regression to predict four quality indicators of ore products by taking system-set temperatures, raw 

material parameters, and production process parameters as input features [7]. 

This study predicts the number of gold, silver, and bronze medals won by each country in the 2024 

Olympic Games using the XGBoost algorithm. Relevant data from the Olympic Games, spanning 

from 1896 to 2024, were collected and preprocessed. Missing values were filled with zeros. Five key 

features were extracted for each Olympic edition: the host country, the number of gold, silver, and 

bronze medals, the total medal count, the number of athletes from each country, the gender 

distribution of athletes, and the sports events for each country. Data from 1896 to 2012 were used as 

the training set, while data from the 2016 and 2020 Olympics served as the test set. The four features, 

excluding the medal counts, were used to predict the 2024 medal counts. The model's ability to 

accurately predict Olympic medal counts has been validated. These findings have significant 

implications for sports policy formulation, resource optimization, and the development of the sports 

industry. 

2. Model Development 

2.1. Data Preprocessing  

Data from the official Olympic website, spanning from 1896 to 2024, were initially collected. The 

raw data included the number of gold, silver, and bronze medals won by each country in each year, 

total medal counts, the number of athletes from each country, the gender distribution of athletes, the 

sports events in each Olympic edition, and the host countries for each edition. Missing values were 

filled with zeros. 

2.2. Feature Engineering  

After data preprocessing, five features influencing the number of medals were constructed as the 

model's inputs. The five features for each Olympic edition included: the host country, the number of 

gold, silver, and bronze medals along with the total medal count for each country, the number of 

athletes from each country, the gender distribution of athletes, and the sports events for each country. 

The total number of medals for a given country in year i can be obtained by summing the counts 

of gold, silver, and bronze medals. This can be mathematically represented by Eq. (1). The calculation 

method for the number of athletes from a given country in year i can be mathematically represented 

by Eq. (2). The gender distribution is determined by classifying athletes based on their gender. This 

can be mathematically represented by Eq. (3) and Eq. (4). 

 Total i =  Gold i +  Silver i +  Bronze i                               (1) 

where  Gold i ,  Silver i , and  Bronze i represent the number of gold, silver, and bronze medals 

for a given country in year i. 

Num_Athletes 
i

= ∑  
ni
j=1 1                                 (2) 

where ni is the number of athletes from a given country in year i. 

 Male_Athletes 
i

= ∑  
ni
j=1  1(Sexj = M)                              (3) 

 Female_Athletes 
i

= ∑  
ni
j=1  1(Sexj = F)                            (4) 
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The m  sports events participated by a given country in year i  are represented as a set 

Sports_Events i. This can be mathematically represented by Eq. (5). The host country in year i is 

represented as Host_Country n. 

Sports_Events i = { Sport  
1

,  Sport  
2

, … ,  Sport  
m

}                      (5) 

After extracting the features, a specific country-year combination feature vector is generated. Each 

feature vector includes the number of gold, silver, and bronze medals, the total number of athletes, 

the breakdown of male and female athletes, sports events, and host country information. 

Mathematically, the n-th country-year combination is represented by Eq. (6). The total number of 

Features n is the product of the number of countries and the number of Olympic editions. 

Features n = [ Gold n, Silver n, Bronze n, . . . , Sports_Events n, Host_Country n]       (6) 

2.3. XGBoost Model Training and Optimization 

The dataset is divided into training and testing sets. The training set includes data from 1896 to 

2012, and the testing set includes data from 2016 and 2020. The training set contains input features 

Xtrain  and target variables ytrain . The input features can be represented by Eq. (7). The target variable 

ytrain  represents the quantities of gold, silver, and bronze medals (Eq. (8)). 

Xtrain = [

 Feature  1
 Feature  2

⋮
 Feature  n

]                                          (7) 

where n is the number of countries multiplied by the total number of Olympic editions. 

ytrain = [

 Gold 1  Silver 1  Bronze 1
 Gold 2  Silver 2  Bronze 2

⋮ ⋮ ⋮
 Gold n  Silver n  Bronze n

]                               (8) 

During the training process, XGBoost uses an objective function (Eq. (9)) that combines the 

minimization of the loss function and a regularization term [8]. The loss function measures the error 

between the model's predicted value ŷi and the true value yi , using the mean squared error (MSE). 

MSE can be mathematically represented by Eq. (10). The regularization term Ω(f) is used to control 

the complexity of the model and prevent overfitting (Eq. (11)). 

L(θ) = ∑  n
i=1 ℓ(yi, ŷi) + Ω(f)                                (9) 

ℓ(yi, ŷi) =
1

2
(yi − ŷi)

2                                   (10) 

Ω(f) = γT +
1

2
λ ∑  T

j=1 wj
2                                  (11) 

where T represents the number of leaves in the tree, wj denotes the weight of the j-th leaf, γ 

and λ are the regularization parameters that control the model complexity. 

XGBoost uses a gradient boosting approach to train trees, with the model progressively updating 

the prediction value ŷi
(t+1)

 for each round (Eq. (12)). In each iteration, XGBoost updates the model's 

prediction by calculating the gain of each tree [9]. During the tree splitting process, XGBoost 

calculates the split gain to select the optimal feature split point. The formula for calculating the split 

gain can be represented by Eq. (13). 

ŷi
(t+1)

= ŷi
(t)

+ η ⋅ ft(xi)                                 (12) 
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where ŷi
(t)

 represents the prediction value for the t-th round, ft(xi) denotes the prediction value 

of the tree model for input xi in the t-th round, and η is the learning rate, controlling the step size 

for updating each round's prediction. 

 Gain =
1

2
[

(∑  i∈L  gi)2

∑  i∈L  hi+λ
+

(∑  i∈R  gi)2

∑  i∈R  hi+λ
−

(∑  i∈S  gi)2

∑  i∈S  hi+λ
]                       (13) 

where gi represents the gradient, hi denotes the second-order derivative, L and R represent 

the left and right subtrees of the current node, and S refers to the data set at the current node. 

2.4. Model Prediction and Result Output 

After the training is complete, the trained model is used to predict the number of gold, silver, and 

bronze medals for the 2024 Olympics. The prediction process is carried out by inputting the new 

features X2024 into the trained model ftrained . Finally, the predicted data for the number of medals 

and the total medal count for each country in 2024 is output. 

3. Model Performance Evaluation 

In this study, the Python programming language was utilized to implement the Olympic medal 

count prediction for the 2024 Games. To optimize the model, the following hyperparameters were 

configured during training: a learning rate of 0.1, a maximum tree depth of 6, both subsample and 

colsample_bytree ratios set to 0.8, and a maximum of 100 boosting iterations. The RMSE was 

employed as the evaluation metric [10]. During training, the RMSE for the training set gradually 

converged to 0.06676, while that for the validation set stabilized at 0.25165. Figure 1 illustrates the 

RMSE trajectories for both the training and validation sets. 

 

Figure 1. RMSE Curves for the Training and Validation Sets 

Figure 2 presents a comparison between the predicted and actual medal counts (gold, silver, and 

bronze) for the top 20 countries ranked by total medal count. Predicted values for each medal type 

were rounded to the nearest integer and aggregated to compute the total medal counts per country. 

Table 1 compares the predicted and actual medal counts for the top 20 countries, based on rounded 

total values. The variables P_GOLD, P_SILVER, P_BRONZE, and P_TOTAL denote the predicted 

counts of gold, silver, bronze, and total medals, respectively, while GOLD, SILVER, BRONZE, and 

TOTAL represent the actual medal counts. The RMSE values for all predicted results were computed 

as follows: 0.6462 for gold, 0.5547 for silver, 0.2965 for bronze, and 0.3922 for total medals. Analysis 

indicates that predictions for bronze medals and total medal counts were more accurate, whereas those 

for gold and silver were comparatively less precise. Overall, the model exhibited strong predictive 

performance and achieved high levels of accuracy. 
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Figure 2. Comparison of Predicted and Actual Values for the Number of Gold, Silver, and Bronze 

Medals in 2024 for the Top 20 Countries Based on Total Medal Count 

Table 1. Comparison of Predicted and Actual Values for the Top 20 Countries Based on Rounded 

Total Medal Counts 

RAN

K 

NO

C 

P_GOL

D 

P_SILVE

R 

P_BRONZ

E 

P_TOTA

L 

NO

C 

GOL

D 

SILVE

R 

BRONZ

E 

TOTA

L 

1 
US

A 
43 42 42 127 

US

A 
40 44 42 126 

2 
CH

N 
41 26 24 91 

CH

N 
40 27 24 91 

3 
GB

R 
18 22 27 67 

GB

R 
14 22 29 65 

4 
FR

A 
19 23 21 63 

FR

A 
16 26 22 64 

5 
AU

S 
18 18 16 52 

AU

S 
18 19 16 53 

6 JPN 19 13 13 45 JPN 20 12 13 45 

7 ITA 13 13 15 41 ITA 12 13 15 40 

8 
NE

D 
15 8 12 35 

NE

D 
15 7 12 34 

9 
GE

R 
12 12 9 33 

GE

R 
12 13 8 33 

10 
KO

R 
13 9 10 32 

KO

R 
13 9 10 32 

11 
CA

N 
9 7 10 26 

CA

N 
9 7 11 27 

12 
BR

A 
3 7 10 20 

NZ

L 
10 7 3 20 

13 
NZ

L 
10 6 3 19 

BR

A 
3 7 10 20 

14 
HU

N 
6 7 6 19 

HU

N 
6 7 6 19 

15 ESP 5 4 9 18 ESP 5 4 9 18 

16 
UZ

B 
8 2 3 13 

UZ

B 
8 2 3 13 

17 IRN 3 6 3 12 IRN 3 6 3 12 

18 
UK

R 
3 5 4 12 

UK

R 
3 5 4 12 

19 
SW

E 
4 4 3 11 

SW

E 
4 4 3 11 

20 
KE

N 
4 2 5 11 

KE

N 
4 2 5 11 
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4. Conclusions 

This study predicts the gold, silver, and bronze medal counts for each country at the 2024 Olympic 

Games using the XGBoost algorithm. First, relevant data from the Olympic Games between 1896 

and 2024 were collected. After data preprocessing, five features were extracted for each Olympic 

Games: host country, the number of gold, silver, and bronze medals, total medal count, the number 

of athletes from each country, the gender distribution of athletes, and the sports events in which each 

country participated. Data from 1896 to 2012 were used as the training set, while data from the 2016 

and 2020 Olympics were used for testing. The model ultimately predicts the medal counts for each 

country in 2024 based on four input features: the sports events in which each country will participate, 

the number of athletes from each country, the gender distribution of athletes, and the host country of 

the 2024 Olympics. Comparison with actual values confirmed that the model can accurately predict 

the Olympic medal counts. 

This model can be applied to predict medal counts for future Olympic Games. For example, when 

predicting the 2028 Olympic medal counts, the trained model requires only these four features—

sports events, the number of athletes, athlete gender distribution, and host country—for each 

participating nation to predict the number of gold, silver, and bronze medals. The model’s predictions 

for gold and silver medals are slightly less accurate than those for bronze medals and total medals, 

indicating room for improvement. In addition to the five features extracted in this study, other factors, 

such as national GDP and investments in sports, could be incorporated to further enhance the model's 

predictive accuracy. 
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