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Abstract. This study proposes an integrated ARIMA–XGBoost–LightGBM model to predict both 

medal counts and medal-winning probabilities for the 2028 Los Angeles Olympic Games. The 

framework begins by applying the ARIMA model to forecast time-series features, such as the number 

of athletes and participating countries. These features are then fed into an XGBoost regressor to 

estimate gold, silver, bronze, and total medals per country. Additionally, a LightGBM classifier is 

utilized to predict the probability that a nation will win at least one medal. Model performance was 

evaluated using ten-fold cross-validation, with R² values exceeding 0.84 across all medal categories, 

demonstrating high accuracy and robust generalization ability. Notably, six countries are projected to 

win their first Olympic medals based on the predicted probabilities. This ensemble approach 

effectively combines time series forecasting with machine learning algorithms, showcasing its 

potential in supporting strategic sports planning and medal outcome prediction. It provides valuable 

forecasting capabilities for complex, dynamic events such as the Olympics. 
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1. Introduction 

The Olympic Games serve as a premier international sporting event that not only showcases 

athletic excellence but also reflects a nation's comprehensive strength in sports development, 

international engagement, and public investment in talent cultivation [1]. Accurate prediction of 

Olympic medal counts has important strategic value: it can assist national Olympic committees in 

planning resource allocation, identifying emerging competitive fields, and setting realistic 

performance goals [2-4]. Especially in light of the upcoming 2028 Los Angeles Olympics, the task 

of forecasting medal outcomes is of growing interest, given the potential influence of the host-country 

advantage, evolving athletic capabilities, and changes in Olympic event composition. 

Traditional medal prediction methods often rely on linear regression models or simple statistical 

extrapolation based on historical rankings [2, 5, 6]. While these approaches may provide a rough 

estimation, they often fail to incorporate nonlinear dynamics, inter-country disparities, and temporal 

trends in participation and performance [7]. Moreover, few models account for uncertainty in 

predictions or offer interpretable insights into which features drive success. These limitations hinder 

their applicability to complex multi-nation, multi-event competitions like the Olympics, particularly 

under changing global conditions and evolving athlete pools [8-10]. 

To address the above challenges, this study proposes a hybrid ARIMA–XGBoost–LightGBM 

modeling framework. The approach leverages the strength of ARIMA for time-series forecasting of 

key indicators (e.g., number of athletes), XGBoost for regression-based medal count prediction, and 

LightGBM for probabilistic classification of medal-winning likelihoods. This integrated pipeline 

effectively combines sequential trends with nonlinear learning and offers both quantitative 

predictions and probabilistic assessments. By applying this ensemble model to historical Olympic 

data and forecasting the 2028 Games, the proposed method demonstrates both high predictive 

accuracy and strong generalizability, while providing interpretable insights through SHAP values and 

model decomposition. 
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2. Construction of the ARIMA-XGBoost-LightGBM Medal Prediction Model 

This study presents an integrated ARIMA–XGBoost–LightGBM framework, as illustrated in 

Figure 1, for predicting medal outcomes at the 2028 Los Angeles Olympics. ARIMA forecasts key 

variables such as athlete counts, which serve as inputs to an XGBoost regressor for estimating each 

country's medal counts. A LightGBM classifier further predicts the probability of winning any medal. 

 

Figure 1. ARIMA–XGBoost–LightGBM model framework diagram 

2.1. Construction of the ARIMA Model 

The ARIMA model is characterized by three parameters: p, d, and q, which represent the order of 

the autoregressive terms, the degree of differencing, and the order of the moving average terms, 

respectively. The general form of the model is: 

 21 1 2 2 1 1 2= + + + + + + + + +t t t p t p t t q t q t py y y y        − − − − − − −              (1) 

where, ty  denotes the observed value of the time series at time t;  is a constant term (i.e., the 

mean); 1 2, , , p   are the autoregressive coefficients; 1 2, , , q    are the moving average 

coefficients; and t represents the error term. 

By modeling and analyzing time series data, the ARIMA model effectively forecasts key 

features—such as the number of athletes—for the 2028 Los Angeles Olympics. These predicted 

features serve as valuable inputs for the subsequent prediction and classification tasks performed by 

the XGBoost and LightGBM models. 

2.2. Construction of the XGBoost Model 

XGBoost (Extreme Gradient Boosting) is an ensemble algorithm based on gradient-boosted 

decision trees. It improves prediction accuracy by sequentially fitting new trees to the residuals of 

previous models. To enhance generalization and prevent overfitting, XGBoost incorporates 

regularization into its objective function, which consists of a loss term and a regularization term, 

defined as: 
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where ˆ( , )i iy yL denotes the loss function for the i-th sample, typically the mean squared error 

(MSE); iy is the true value, and ˆ
iy is the predicted value. ( )kf represents the regularization term, 

which controls model complexity and helps prevent overfitting. 

The training process of the algorithm can be summarized as follows: 

1) In each iteration, a new decision tree is added to the existing model. 

2) Before each iteration, gradient statistics are computed to guide the tree structure optimization. 
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where ig represents the first-order gradient of the objective function, and ih represents the second-

order gradient. 

3) A complete decision tree ( )sf x is constructed based on the exact greedy algorithm and gradient 

information. 

During node splitting, the optimal feature and split point are selected by evaluating the gain in the 

objective function. 
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The weights of the leaf nodes in the final tree are given by: 
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4) The newly generated tree is added to the existing model: 

 ( )( ) ( 1)ˆ ˆs s

i i iy y f x−= +                            (7) 

where the weight parameter  functions similarly to a learning rate by controlling the influence 

of each newly added tree on the overall model. This ensures that each iteration makes only a small 

improvement, allowing the model to gradually converge toward the optimum and effectively reducing 

the risk of overfitting. 

2.3. Construction of the LightGBM Model 

The core idea of LightGBM is to reduce prediction error iteratively using a gradient boosting 

framework. For multi-class classification tasks with K categories, LightGBM builds multiple binary 

classifiers, each estimating the probability of a specific class. The final predicted class is the one with 

the highest probability. The procedure is as follows: 

1) Objective Function: At each iteration, LightGBM aims to minimize a loss function. In this 

study, the multi-class cross-entropy loss is adopted: 
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where ky is the indicator that the true label of sample y belongs to class k , and kp denotes the 

predicted probability that the sample belongs to class k . 

2) Gradient Boosted Decision Tree: In each iteration, a new decision tree is constructed based 

on the residual errors from the previous round. The prediction is updated as follows: 
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 1( ) ( ) ( )m m mF x F x T x+ = +                              (9) 

where 1( )mF x+  is the output of the m-th tree, ( )mT x is the newly trained decision tree, and is the 

learning rate. 

3) Class Prediction: For multi-class classification tasks, LightGBM trains a separate classifier 

for each class. The predicted probability for class k is calculated as: 
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LightGBM incorporates several optimization techniques to enhance its efficiency and performance, 

particularly on large-scale datasets. Key among these are the histogram-based decision tree learning 

algorithm and the leaf-wise tree growth strategy. 

3. Results 

3.1. Datasets 

The data in this paper are sourced from the official website of Nielsen. This study integrates multi-

source historical data from the Summer Olympics, including athlete participation records, national 

medal statistics, host country information, and event classifications, as released by the International 

Olympic Committee. Key preprocessing steps included: (1) aggregating athlete data by country, year, 

and sport to calculate participation numbers and gender ratios; (2) merging medal statistics with zero-

value imputation for non-winning countries; (3) introducing a host country indicator variable to 

quantify the host nation effect. For the 76-dimensional high-dimensional features, principal 

component analysis (PCA) was applied to extract the top 10 principal components (PC1-PC10), 

achieving a cumulative variance contribution rate of 92.4% to reduce data complexity. Feature 

engineering derived critical indicators such as medal growth rate and medal efficiency, with 

standardization ensuring model input consistency. 

3.2. Analysis of ARIMA Model Prediction Results 

To forecast the number of participants and other key indicators for the 2028 Olympic Games, this 

study employed the ARIMA model. First, a stationarity test was conducted on variables such as PC1 

using the Augmented Dickey-Fuller (ADF) test, which confirmed that the data became stationary 

after first-order differencing. Subsequently, the ARIMA (0,1,0) model was selected based on the 

analysis of the autocorrelation function (ACF) and partial autocorrelation function (PACF) plots. As 

shown in Figure2, the fitted model captures the historical trend effectively, providing a reliable basis 

for forecasting future medal-related indicators. Based on this fitted model, predictions for the number 

of participants and other relevant features at the 2028 Olympics were obtained. 
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Figure 2. Time Series Analysis for Olympic Data 

Figure 2. illustrates the ARIMA model’s prediction results for the PC1 data, including the actual 

values, fitted values, and forecasted values. For some feature columns, the ARIMA model exhibited 

suboptimal performance, which may be attributed to the loss of temporal information during PCA-

based dimensionality reduction. Therefore, for features with a coefficient of determination (R²) below 

0.6, the average values from the previous two Olympic Games were used as the predicted values for 

the 2028 Olympics. 

3.3. Analysis of XGBoost Prediction Results for Medal Counts 

During the modeling process, the extracted and dimensionally reduced features were used as 

training inputs. The data were first standardized, and the XGBoost model was then trained on this 

processed dataset. Through iterative learning and optimization of the feature space, the model 

generated fitted results for gold, silver, bronze, and total medal counts, as shown in Figure 3. 
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Figure 3. Comparison of XGBoost Model Predicted Values and Actual Values 

From these comparison plots, it can be observed that the XGBoost model fits the actual values 

well in most cases, particularly in the high-value range, where it accurately captures the peaks in 

medal counts. To assess the uncertainty of the model’s predictions, ten-fold cross-validation was 

conducted. During this process, performance metrics were recorded, and each trained model was 

saved for subsequent prediction tasks. The performance metrics are summarized in Table.1. 

Table.1. XGBoost Model Ten-Fold Cross-Validation Results and Evaluation Metrics 

Type Mean Std 

Gold Explained Variance 0.8421 0.0781 

Gold Mean Absolute Error 0.7549 0.0838 

Gold Mean Squared Error 4.9746 1.9713 

Gold R-squared 0.8416 0.0782 

Silver Explained Variance 0.8791 0.0585 

Silver Mean Absolute Error 0.6585 0.0868 

Silver Mean Squared Error 2.8670 1.1410 

Silver R-squared 0.8790 0.0586 

Bronze Explained Variance 0.8461 0.0640 

Bronze Mean Absolute Error 0.7256 0.0806 

Bronze Mean Squared Error 3.7554 2.3033 

Bronze R-squared 0.8456 0.0644 

Total Explained Variance 0.9180 0.0471 

Total Mean Absolute Error 1.3082 0.2084 

Total Mean Squared Error 18.530 10.175 

Total R-squared 0.9177 0.0472 

 

The 2028 forecasted values of the feature variables obtained from the ARIMA model were used 

as inputs for the ten trained XGBoost models. Based on these inputs, the expected number of medals 

for each country in the 2028 Olympics was estimated. The prediction intervals are illustrated in Figure 

4. 
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Figure 4. Comparison of XGBoost Model Predicted Values and Actual Values 

The U.S. leads in both gold and total medals with stable predictions, followed by China and the 

UK; countries like Egypt and Brazil show greater uncertainty. 

3.4. Analysis of LightGBM Model Results for Medal-Winning Probability Prediction 

We employed the LightGBM model to perform a binary classification task on the “Medal_pro” 

variable. Using the features extracted and dimensionally reduced in, the model was trained to predict 

whether a country would win at least one medal in a given year. Instead of outputting a discrete class 

label, the model returns the probability of class “1,” which represents the likelihood that a country 

will win a medal. The classification results are shown in Figure 5. 

 

Figure 5. LightGBM Model Prediction Results: Confusion Matrix and Predicted Probability 

Distribution for Class 1 

Figure 5 presents the model’s confusion matrix and the predicted probability distribution for class 

1. The confusion matrix summarizes the classification performance on the test set, including both 

correct and incorrect predictions. The probability histogram illustrates the distribution of predicted 

probabilities for class 1. 

Using the 2028 feature forecasts generated by the ARIMA model as inputs to the trained 

LightGBM model, we estimated the medal-winning probabilities for countries that did not win medals 

previously. The results are shown in Table 2. 
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Table.2. Table of predicted national award probabilities 

Year NOC Medal_pro_prob 

1932 AUS 0.2032 

1932 MEX 0.3590 

1948 IRL 0.2193 

1956 GER 0.3084 

1964 GER 0.3299 

1968 TPE 0.3268 

1992 IOA 0.3072 

1996 SCG 0.2067 

2000 SCG 0.2189 

2012 MDA 0.3428 

2016 IOA 0.4043 

2020 ROC 0.4495 

2024 AIN 0.4382 

 

We set 0.2 as the probability threshold; countries with predicted medal-winning probabilities 

above this value are considered to have a relatively high likelihood of earning a medal in the 

upcoming Olympics. Based on this criterion, six countries are projected to win their first Olympic 

medal: PHI, VNM, KEN, FJI, BAH, and ARE. 

4. Conclusions 

This paper presents a novel ensemble framework integrating ARIMA, XGBoost, and LightGBM 

to predict Olympic medal outcomes. The ARIMA component enables the capture of time-series 

patterns in key features, while XGBoost and LightGBM enhance predictive accuracy and 

classification capabilities. The model demonstrates strong performance in both medal count 

prediction and medal-winning probability estimation, with high consistency observed through cross-

validation. Forecast results suggest that the United States will maintain its lead, while emerging 

nations such as the Philippines and Kenya show potential for earning their first Olympic medals. The 

proposed framework not only offers high accuracy but also improves interpretability through the use 

of SHAP analysis. Future work may incorporate more contextual variables (e.g., economic or policy 

factors) and extend the framework for multi-Games comparative prediction. 

While the model has performed well in medal prediction, incorporating additional contextual 

variables (e.g., economic and policy factors) could further improve accuracy. Future work could 

extend the model's application to other international events, enhancing its adaptability and real-time 

forecasting ability. As data and algorithms evolve, the model's generalizability is expected to improve. 
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