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Abstract. This study proposes a hybrid probabilistic framework integrating ARIMA-MCMC temporal 
modeling and Bayesian networks to address performance forecasting challenges in large-scale 
competitive systems. The framework combines ARIMA's capability to capture nonlinear temporal 
dependencies with MCMC's adaptive sampling for robust parameter optimization, while Bayesian 
networks quantify causal relationships among socioeconomic, demographic, and geopolitical 
variables. Validation on historical datasets (1948–2024) demonstrates high prediction accuracy, with 
errors controlled below 5% for established participants and discriminative power (AUC = 0.93) in 
identifying breakthrough potential for emerging entities. Key innovations include a dynamic 
parameter-tuning mechanism for handling non-stationary data and a modular architecture enabling 
transferability to domains such as supply chain risk assessment and infrastructure demand 
forecasting. The model's sensitivity to critical parameters (e.g., participant scale) is systematically 
analyzed, revealing nonlinear amplification effects mitigated through regularization. Limitations in 
static correlation assumptions are acknowledged, with proposed enhancements leveraging real-time 
data assimilation and adaptive learning. 
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1. Introduction 

Predictive modeling, as a core methodology for complex system analysis, continues to receive 

extensive attention in the fields of engineering management and decision science. The construction 

of predictive models based on multi-source heterogeneous data requires adderssing critical challenges 

including temporal dynamics, factor coupling, and outcome uncertainty, which represent frontier 

directions in current industrial engineering and operations research. 

In the domain of multivariate regression models, the extended Logit framework proposed by 

Bernard et al. (2018) [1] introduced economic elasticity coefficients, achieving a 17.3% improvement 

in R² values over traditional models for international trade flow forecasting. Regarding temporal 

analysis, recent advancements in ARIMA models are exemplified by Holt's (2021) adaptive 

differencing technique [2], which dynamically adjusts (p,d,q)parameter combinations to attain 94.6% 

weekly prediction accuracy in electricity load forecasting. For weight optimization challenges, 

Markov Chain Monte Carlo methods demonstrate unique advantages in supply chain risk modeling, 

with Chen et al.'s (2022)  MCMC-TOPSIS hybrid model [3] reducing supplier evaluation errors to 

below 4.8%. Notably, Bayesian networks have achieved breakthrough engineering applications in 

uncertainty modeling, as evidenced by Zhang et al.'s (2023) three-tier Bayesian inference 

architecture[4], which enhanced fault diagnosis accuracy in smart manufacturing systems to 98.2%. 

Despite these advancements, multi-model collaborative prediction still faces three critical 

technical bottlenecks: First, traditional regression models struggle with nonlinear interactions in high-

dimensional features; Second, temporal characteristics of dynamic systems lack effective integration 

mechanisms with spatial correlations in cross-sectional data; Third, computational efficiency of 

Monte Carlo simulations constrains real-time prediction capabilities for complex systems. These 

challenges are particularly pronounced in competitive performance prediction scenarios characterized 

by multidimensionality and strong coupling – exemplified by multifaceted competitive systems 
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competition iterations involving 23 dynamic influencing factors spanning participant scale, resource 

allocation, and environmental variables[5]. 

This study proposes a novel predictive framework integrating dynamic temporal modeling and 

probabilistic graphical models, with three key technical innovations: (1) Construction of ARIMA 

hybrid models capturing long-term dependencies in historical data; (2) Design of adaptive MCMC 

samplers based on Metropolis-Hastings algorithms for efficient parameter estimation; (3) 

Development of Bayesian network architecture with conditional independence testing mechanisms 

to ensure causal interpretability of variable relationships. Experimental validation using international 

competitions with multifactorial influences demonstrates the proposed model's significant superiority 

over benchmark models in both prediction accuracy and computational efficiency. 

The engineering value manifests in three aspects: First, the model fusion strategy provides an 

extensible methodological framework for complex system prediction[6]; Second, the parameter 

optimization algorithms can be transferred to supply chain management and traffic flow forecasting 

domains; Third, the developed evaluation system offers new quantitative tools for resource allocation 

decision support systems. These innovations hold significant theoretical and practical value for 

enhancing the applicability and robustness of engineering prediction models. 

2. Method Description 

2.1. ARIMA Model 

The Autoregressive Integrated Moving Average (ARIMA) model, introduced by Box and Jenkins 

in 1976, is a classical time series forecasting methodology comprising three components: 

Autoregressive (AR), Integration (I, differencing), and Moving Average (MA). Its core principle lies 

in leveraging historical patterns within the data to capture temporal dependencies. 

The Autoregressive (AR) term characterizes the linear relationship between current observations 

and historical values. The Integration (I) term applies differencing operations to eliminate non-

stationarity in the original series. The Moving Average (MA) term expresses the current value as a 

linear combination of past random errors. By appropriately configuring these three parameters (p, d, 

q), the ARIMA model effectively fits and forecasts diverse time series data. Notably, higher orders of 

p and q enhance modeling flexibility at the expense of increased computational complexity [7]. 

The mathematical formulation is as follows: 

𝜑(𝐿−1)(1 − 𝐿−1)𝑑𝑥(𝑡)=𝜃(𝐿−1)𝜖(t) (1) 

Here, 𝐿−1denotes the unit lag operator, ε(t) represents a white noise process with zero mean and 

variance 𝜎2, dd indicates the order of differencing, and x(t) refers to historical data or known signals. 

When applying the model for forecasting, it is necessary to estimate the unknown 

parameters: d, p, q, φi  (i=1,2,3,…,p), and θj (j=1,2,3,…,q) [8]. 

Advantages and Innovations of the Model:1. The differencing operation eliminates the stationarity 

restrictions inherent in traditional ARMA models.2. The parameter combination (p,d,q) enables the 

simulation of complex time-dependent patterns.3. The model distinctly differentiates trend (captured 

by AR), cyclical (captured by MA), and stochastic fluctuation components. The ARIMA model is 

natively integrated into many statistical software packages, such as SPSSPRO employed in this study, 

allowing users to perform efficient modeling and forecasting tasks. 

2.2. MCMC Model 

The Markov Chain Monte Carlo (MCMC) method combines Monte Carlo simulation with Markov 

chain principles. Within the Monte Carlo framework, if samples drawn from a posterior distribution 

are independent, the sample mean converges to its expected value under the Law of Large Numbers. 

However, when samples exhibit dependence, effective sampling requires the use of Markov chains, 

forming the basis of the MCMC method [9]. MCMC serves as an iterative framework rooted in 
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Markov chains, designed to generate samples from posterior distributions and compute sample-based 

estimates of distributional characteristics under study [10].  

The Bayes' theorem forms the mathematical foundation of statistical inference, emphasizing the 

integration of prior knowledge with observed data to update understanding of unknown parameters. 

The formula is expressed as: 

𝑃(𝜃|𝐷) =
𝑃(𝐷|𝜃)𝑃(𝜃)

𝑃(𝐷)
 

(2) 

Posterior Distribution P(θ|D) represents the probability distribution of parameters θ given 

observed data D. The likelihood function  P(D|θ) quantifies the probability of generating 

data D under parameters θ, while the prior distribution  P(θ) encodes initial assumptions about θ. 

The evidence term  P(D), acting as a normalization constant, denotes the marginal probability of the 

data. 

In Bayesian inference, directly computing the posterior distribution  P(θ|D) is often intractable, 

particularly for high-dimensional or non-conjugate models. This necessitates the use of sampling 

methods (e.g., MCMC) to approximate its distributional properties. 

Markov Chain Monte Carlo (MCMC) methods construct a Markov chain with a specific transition 

kernel, ensuring its stationary distribution converges to the target posterior distribution π(θ). 

Key advantages of MCMC include:1. Leveraging the Markov chain’s local transition mechanism 

to bypass direct computation of global normalization constants.2. Supporting sampling from 

asymmetric, multimodal, or non-normalized probability densities.3. Regardless of initial states, the 

chain’s long-term behavior depends solely on the target distribution. 

Among MCMC sampling algorithms, the Metropolis-Hastings (MH) algorithm is a cornerstone 

implementation. Its mathematical validity stems from satisfying the Detailed Balance Condition: 

𝜋(𝜃) = 𝑇(𝜃′|𝜃) = 𝜋(𝜃′)𝑇(𝜃|𝜃′) (3) 

Acceptance Probability Formula:  

𝛼(𝜃′|𝜃) = 𝑚𝑖𝑛(1,
𝜋(𝜃′)𝑞(𝜃|𝜃′)

𝜋(𝜃)𝑞(𝜃′|𝜃)
) (4) 

Proposal Distribution q: When a symmetric distribution (e.g., Gaussian) is chosen for the proposal 

distribution q, the acceptance probability simplifies to: 

𝛼 = 𝑚𝑖𝑛(1,
𝜋(𝜃′)

𝜋(𝜃)
) (5) 

Asymmetric Correction: When the proposal distribution q is asymmetric, the acceptance rate 

compensates for bias through density ratio adjustments. 

MCMC methods effectively address the limitations of traditional Monte Carlo approaches in high-

dimensional spaces by leveraging the local exploration mechanism of Markov chains. As a core 

implementation, the MH algorithm provides a versatile framework for parameter estimation in 

complex Bayesian models through flexible design of proposal distributions and acceptance criteria. 

However, its efficiency heavily depends on algorithmic parameters (e.g., step size, proposal 

distribution form). In practical applications, adaptive strategies and diagnostic tools must be integrated 

to ensure the reliability of posterior inference. 

3. Method Description 

To achieve scientific prediction of medal distribution and dynamic analysis of key influencing 

factors for the 2028 Los Angeles Olympics, this study proposes an integrated framework combining 

multi-dimensional data modeling and hierarchical analysis. Based on historical event characteristics, 

national economic-demographic indicators, and dynamic sport program settings, the research adopts a 
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three-phase methodology of "data-driven classification – probabilistic inference prediction – 

robustness verification," systematically integrating time series analysis (ARIMA-MCMC), Bayesian 

network modeling, and sensitivity analysis techniques. Through standardized data preprocessing, 

stratified national competitiveness modeling (including established teams and emerging nations), and 

dynamic parameter optimization, the framework overcomes the limitations of static assumptions in 

traditional models. It enables precise prediction of emerging nations' first-medal probabilities, 

quantitative assessment of contextual advantages, and correlation analysis between event 

programming and outcome distribution dynamics. The subsequent sections will detail the 

methodological design logic, model interaction mechanisms, and their synergistic optimization 

pathways in complex systems, providing data-driven decision support.  

3.1. Assumptions and Justifications 

 Hypothesis 1: The expected number of medals for Country C in the n-th Olympic Games exhibits 

a linear relationship with its economic strength (e.g., GDP) and population size. 

Rationale: While the actual relationship may be more complex, assuming linearity provides a 

simplified yet reasonable starting point for preliminary modeling, facilitating subsequent analysis and 

validation. 

Hypothesis 2: Economic strength and population size have an interactive effect that jointly 

influences competitive outcomes. 

Rationale: As the combined effect of these two factors is a key focus of this study, hypothesizing 

their interaction aligns with the research objectives and theoretical relevance. 

Hypothesis 3: The model incorporates random effects associated with countries and Olympic 

editions, which impact expected medal outcomes. 

Rationale: To account for uncontrollable factors (e.g., political environments, organizational 

variations) across nations and Olympic editions, random effects are introduced to capture these 

uncertainties. 

Hypothesis 4: The constructed model exhibits stability within the defined data scope and can 

accurately predict future medal counts. 

Rationale: Ensuring model reliability and validity in practical applications represents a 

fundamental objective of model development and verification. 

Hypothesis 5: The data utilized for modeling are complete and accurate, with no omissions or 

errors. 

Rationale: High-quality data serve as the foundation for effective modeling, necessitating the 

assumption of data integrity and precision. 

3.2. Notations 

The key mathematical notations used in this paper are listed in Table 1. 

Table 1. Notations used in this paper 

Symbol Description 

c The country code 

n The sessions of the Olympic Games 

 The historical medal count 

 The expected value of medals 

X The eigenvector affecting the number of medals 

 Parameters that reflect the degree of influence of eigenvalues 

 The probability for a medal-less country to win a medal 

 The mean of the treatment group for a specific covariate 

 The mean of the control group on a certain covariate 
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3.3. Data Preprocessing 

First, data on Olympic participation records from 1948 to 2024 were extracted from the IOC’s 

public database, the UN Population Statistics Platform, and the World Bank Economic Indicators 

Repository. To address the timeliness of participation records, countries that had participated in at least 

three Olympic Games within the past 30 years (post-1992) were selected, while historically defunct 

entities (e.g., the Soviet Union, East Germany) and countries with prolonged non-participation or 

abnormal labels were excluded, resulting in 173 valid national datasets. Emerging nations with 

discontinuous participation records but demonstrated competitive potential (e.g., Saint Lucia, Cape 

Verde) were categorized separately based on their participation frequency in the most recent three 

editions. For missing event-specific data (e.g., unpublicized participant counts in niche sports), a zero-

value imputation strategy was applied, supplemented by event configuration details from the LA28 

Organizing Committee’s official 2028 Olympics project list. To enhance model robustness, the dataset 

integrated UN World Population Prospects 2024 demographic projections and World Bank GDP per 

capita metrics, forming a multidimensional feature set encompassing economic, demographic, and 

geopolitical stability factors. 

Historical participation patterns were classified into four typologies: continuous-type (regular 

participation), emerging-type (debutants in recent editions), special-type (zero historical medals), and 

eliminated-type (no participation in 30 years). Economic and demographic indicators were 

standardized to eliminate scale disparities [11], while geopolitical stability was quantified using 

conflict risk scores from open-source international databases, normalized to a 0-1 continuum. 

Correlation analyses between historical medal counts and participant engagement numbers identified 

and rectified anomalies (e.g., negative medal tallies or implausible GDP per capita outliers). The final 

curated dataset comprised 10 core features spanning national attributes, historical performance, and 

contextual variables, ensuring high-consistency inputs for model training. National Olympic 

Committee (NOC) codes and participation years are detailed in Table 2. 

Table 2. Unusual non-participating countries in 2024 

Serial Number NOC number The year of the last participation 

1 AHO 2008 

2 BLR 2020 

3 EUN 1992 

4 IOA 2016 

5 LIB 2016 

6 ROC 2020 

7 ROT 2016 

8 RUS 2016 

9 SCG 2004 

10 TCH 1992 

3.4. Armia-mcmc Hybrid Prediction Modelns 

For stable-type teams, their historical performance data are influenced by multiple interacting 

factors. By analyzing this historical data, nonlinear modeling techniques can be leveraged to capture 

dynamic patterns and trends inherent in the dataset. We therefore integrate multiple algorithms to 

develop an ARIMA-MCMC hybrid prediction model for estimating medal-winning probabilities of 

such national teams. Assuming a nonlinear relationship between medal counts and a set of predictive 

features, we formulate the regression model as follows: 

                            (6) 

In the above equation, represents the number of performance indicators or total medals won 

by country c in the n-th Summer Olympics. 
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,The feature vectors and regression coefficient vectors for 

both are denoted.  

represents historical medal data,  represents the number of athletes,  represents  the  

number  of events, indicates whether there is a contextual effect (coded as 1/0 for yes/no),and

reflects the impact of the feature variables on the number of medals. 

 is a nonlinear function that describes the complex relationship between and , is the 

error term, representing the random fluctuations and the unexplained portion of the regression model. 

Since medal counts  represent over-dispersed non-negative integer count variables, to 

accommodate the high volatility observed in real-world medal data while linking linear regression to 

non-negative expected values, a log-link function is required to modify the nonlinear regression model 

introduced in the previous section. This ensures that the logarithm of the predicted gold medal 

expectation can be expressed as a linear combination of the independent variables: 

In the above equation,  𝑚𝑐,𝑛 represents the expected number of medals for country c in the n-th 

Olympic Games; serves as the baseline medal count, representing the global intercept; 𝑢𝑐 and 𝑣𝑛 

represent the random effects of country c and the n-th Olympic Games, respectively ,with the 

assumption that𝑢𝑐~𝑁(0, 𝜎𝑢
2) , 𝑣𝑐~𝑁(0, 𝜎𝑣

2); 𝜎𝑢
2  and 𝜎𝑣

2  represent the variances of the random 

effects for country and edition. 

Given the large-scale, high-complexity data characterized by nonlinearity and strong stochasticity, 

evaluations and tests of multiple predictive models revealed that standalone approaches—such as 

linear programming or MCMC algorithms—failed to achieve satisfactory alignment with empirical 

data. After comprehensive analysis, we ultimately integrated ARIMA and MCMC algorithms into a 

hybrid model. The architectural logic of this combined methodology is illustrated in Figure 1. 

 

Figure 1. Flowchart of the Fusion Algorithm 

The ARIMA-MCMC hybrid predictive model combines ARIMA's capabilities in handling non-

stationary time series with MCMC's stochastic sampling properties. It excels at processing complex, 

large-scale datasets, capturing nonlinear relationships, optimizing parameter selection, and enhancing 

model robustness and prediction accuracy. This study implements a comprehensive development and 

application of the ARIMA and MCMC algorithms, with the following detailed implementation steps: 

 (7) 

(1) To address the difficulty in accurately obtaining the feature values and  for 2028, the 

ARIMA sequence is used for data forecasting to form a complete feature value dataset. 

(2) The parameters , , , in the model can be estimated through sampling using Markov 

Chain Monte Carlo (MCMC). By fitting historical data (1948-2024), the estimated values and 

confidence intervals for each parameter can be obtained. 

(3) Using the sampled parameters, new feature value datasets are generated through repeated 

iterations. 
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(4) he updated feature value dataset is organized, forming a Markov chain, which is then used to 

predict the value of . 

3.5. The First Medal Prediction by Bayesian Networks 

To address the probabilistic prediction of emerging nations winning their first Olympic medal, this 

study constructs a Bayesian network-based probabilistic inference model. The model integrates core 

variables such as national population size, GDP per capita, and geopolitical stability, combined with 

multi-source data including participant engagement rates and historical performance, to quantitatively 

assess the breakthrough potential of non-medal-winning countries at the 2028 Los Angeles Olympics. 

The specific modeling process begins with extracting population totals and GDP metrics from the 

World Bank’s Global Population and Economic Development Database (2024 edition) and evaluating 

political stability using the Geopolitical Risk Index published by the International Crisis Group (ICG). 

Based on this analysis, the prediction objective is defined as estimating the probability of a 

historically medal-less nation winning a medal in the next Olympic Games (or within a specified 

timeframe). Within the Bayesian network framework, this involves one or more stochastic variables. 

To facilitate network construction, Node A is designated as the target variable (representing medal 

acquisition), modeled as a binary outcome (1: medal won, 0: no medal). Nodes B, C, D, E, F, and G 

represent GDP per capita, population size, participant engagement rate, historical medal count, 

geopolitical stability, and other contextual factors, respectively. 

A Bayesian network (BN) is a probabilistic model grounded in Bayesian theory, designed to predict 

outcome likelihoods. It comprises a directed acyclic graph (DAG) that describes event relationships 

through graph theory and conditional probability distributions [12]. To achieve the prediction goal, the 

network structure and conditional probability distributions for each node must be defined. Leveraging 

domain expertise and logical reasoning, dependencies between nodes are established as follows: medal 

acquisition (A) may depend on GDP per capita (B), population size (C), participant engagement rate 

(D), historical medal count (E), and geopolitical stability (F). 

The joint probability distribution can thus be expressed as: 

                    (8) 

In probability distribution, P(A), P(B), P(C), P(D), P(E), P(F) represents the probability of the 

corresponding random variable occurring; represents the probability of the corresponding 

random variable occurring; represents the conditional probability of winning a medal given the 

population size; and represents the conditional probability of winning a medal given the 

proportion of athletes. The conditional probability relationships can be depicted as Figure 2. 

 

Figure 2. Bayesian Node Relationship Diagram 

Through research and analysis of expert statements and data compilation in the fields of economics, 

demography, and sports, we have determined the following probability distributions ,which are shown 

in Table 3 and Table 4. 
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Table 3. The probability distribution indicators of node A with nodes B, C, and D 

Athlete Occupation 
Economic 

Experience 
Population Quantity 

Probability of Winning the 

Prize 

High Strong Many 0.8 

Medium Medium Medium 0.5 

Low Weak Few 0.2 
 

Table 4. Probability distribution indicators of node B and node E. 

Economic strength Geopolitical environment Geopolitical environment facing challenges 

Strong 0.6 0.4 

Weak 0.2 0.8 

3.6. Application of Various Prediction Models and Result Analysis 

Based on the constructed ARIMA-MCMC integrated prediction model, we predict the potential 

number of medals for the Consistent Teams in the 2028 Los Angeles Olympic Games. The specific 

steps are as follows: Feature input: Prepare the predicted features for each country for the 2028 Los 

Angeles Olympic Games, including historical gold medal count, the presence of host country effect, 

the number of events in 2028, and the number of participating athletes, etc. 

Expected Medal Count Calculation: Substitute the feature vector for 2028 into the model to 

calculate the expected medal count for each country. 

Prediction Interval Construction: Use the MCMC algorithm to sample the confidence intervals of 

 and , and combine it with the log-link function to compute the predicted data results, reflecting 

the confidence level of the predictions. 

After analysis and prediction, we use a post-prediction validation method to assess the consistency 

between the predicted data and the observed data. The actual and predicted data for the top 10 

Consistent Teams' total medals and performance indicators in the 2024 Olympics are visualized as 

shown in the Figure 3 and Figure 4 below. 

 

Figure 3. Prediction of Total Medal Count in 2024 
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Figure 4. Total Medal Count Statistics in the 2024 Olympics 

The results show that the predicted data aligns highly 

with the observed data within the margin of error, indicating that the model has strong reliability 

and validity. 

By repeating the above prediction steps, we conduct a forecast analysis for the number of each type 

of medal and the total number of medals for all countries in 2028. Due to space limitations, only the 

number of each type of medal and the total number of medals for the top 10 Consistent Teams in the 

2024 Olympics are shown.  

The line chart displays the predicted medal results for the 2028 Olympic Games, where the United 

States shows a significant lead, with the total medal count far surpassing other countries, followed by 

China, the United Kingdom, and others, indicating their strong competitiveness in the Olympics. Other 

countries such as Australia, France, and Japan also show robust and strong economic performance. 

Taking the United States as an example, the predicted number of performance indicators is around 44, 

with a confidence interval of [40.50, 44.53]. There is a 95% probability that the predicted number of 

performance indicators will fall within this range. The line graph is shown in Figure 5. 

 

Figure 5. 2028 Medal Prediction For Consistent Teams 
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Based on the Bayesian first medal prediction model established , we used Python's sklearn library 

to construct and train the Bayesian network, outputting the probability of each country's medal-

winning probability. Among them, UA Emirates and DR Congo have a higher probability of winning 

their first medal. The specific nodes and the probability of obtaining the first medal are shown in Table 

5. 

Table 5. Bayesian Node Data for UA Emirates and DR Congo 

 UA Emirates DR Congo 

GDP 5296 628 

Population 1250 10562.5 

Athletes Proportion 1 1 

Political Stability 0 1 

First-medal Probability 0.7982 0.5547 

 

GDP is measured in billions of US dollars, and population in ten thousands. By integrating MCMC 

prediction results with medal statistics from emerging teams and Bayesian network inference, trends 

in national medal counts can be analyzed. Countries exhibiting stable historical growth in medal counts, 

coupled with model predictions of continued competitive capability enhancement, are projected to 

achieve better results at the 2028 Olympics. Conversely, nations with declining medal trends are 

predicted to underperform in 2028. 

3.7. Sensitivity Analysis 

This study systematically validates the robustness and stability of predictive models under varying 

perturbations through sensitivity analyses. First, parameter sensitivity of the ARIMA-MCMC hybrid 

model is tested using historical Olympic datasets (2000–2024). Results indicate that fluctuations in 

athlete numbers significantly impact performance forecasts: a 10% increase in athletes leads to an 

average prediction bias of 12% (confidence interval ±2.5%), while a 10% decrease reduces predicted 

medal counts by 9.8%. Further analysis reveals that the model’s sensitivity to participant engagement 

stems from its nonlinear relationship with competitive performance, necessitating regularization 

methods to optimize parameter weights and enhance stability.  

The classification performance of the Bayesian network model is evaluated using confusion 

matrices and Receiver Operating Characteristic (ROC) curves. Leveraging publicly available global 

population and GDP data, the model demonstrates strong discriminatory power for "high-probability 

medal-winning" (AUC = 0.93) and "low-probability medal-winning" (AUC = 0.85) categories. 

However, misclassification rates for intermediate probability classes (0.5) are higher (F1-score = 0.72). 

Monte Carlo cross-validation identifies data gaps in geopolitical stability nodes as a source of error, 

recommending enhanced historical conflict event statistics to improve conditional probability 

accuracy. 

The analyses confirm the model’s practical utility but highlight sensitivities to specific parameters 

(e.g., athlete numbers, geopolitical data). To ensure reliability in complex real-world scenarios, further 

optimization through multi-source data integration and dynamic weight adjustments is proposed. 

4. Model evaluation and algorithm analysis 

This study employs a multi-model fusion approach to systematically predict medal distributions for 

the 2028 Los Angeles Olympics and quantify the impact of key influencing factors. In terms of model 

performance, the ARIMA-MCMC hybrid model demonstrates high accuracy in predicting medal 

counts for historically stable nations (e.g., the United States and China), with gold medal prediction 

errors controlled within 5% and confidence intervals (e.g., 44 ± 2.5 performance indicators for the 

U.S.) closely aligning with historical observations. The Bayesian network model exhibits strong 

discriminative capability (AUC = 0.93) in estimating the probability of first-time medal wins for 

emerging nations, exemplified by the UAE’s predicted probability of 79.82%. Additionally, three-
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dimensional visualization analyses reveal country-specific impacts of event configurations on medal 

outcomes, such as swimming contributing over 30% of medal gains for the U.S. and weightlifting for 

China. 

However, while enhancing model robustness, three limitations warrant attention. First, the ARIMA-

MCMC method shows significant dependence on critical parameters like athlete numbers; systematic 

biases in data collection (e.g., incomplete training data due to short participation histories in emerging 

nations) may induce nonlinear amplification of prediction errors. Second, despite the interpretability 

of Bayesian networks, their node conditional probabilities rely on domain expertise, potentially 

underestimating complex interaction effects (e.g., nonlinear fluctuations in international participation 

due to abrupt geopolitical shifts) due to subjective cognitive biases. Finally, the model’s theoretical 

assumption of static correlations among economic, demographic, and medal metrics limits its ability 

to dynamically adapt to sustained systemic disruptions, such as sports policy reforms (e.g., national 

training system transitions) or public health crises (e.g., pandemic-induced event cancellations). 

Enhancing environmental responsiveness through real-time data assimilation mechanisms is 

recommended. 

Innovations of the Proposed Model Compared to Existing Studies: 

1. Contrast with Traditional Linear Regression model: Conventional models (e.g., PwC’s linear 

regression) assume linear independence among variables, whereas this study introduces interaction 

terms (e.g., GDP × population) and random effects (nation/edition-specific variations) to better capture 

real-world composite effects. 

2. Contrast with Single Time-Series Models: Pure ARIMA models fail to incorporate covariates 

(e.g., contextual effects). The ARIMA-MCMC hybrid improves prediction accuracy to a 95% 

confidence level by integrating feature-based forecasting and Bayesian parameter estimation. 

contextual effectcal innovation and multi-dimensional validation, this study delivers a solution 

balancing precision and interpretability for Olympic medal prediction. Its core strength lies in multi-

model synergy and dynamic uncertainty quantification [13], outperforming traditional approaches in 

complex real-world scenarios. Future enhancements could integrate real-time data streams (e.g., 

dynamic participant metrics) and reinforcement learning frameworks to further boost dynamic 

adaptability, enabling more precise decision support for global sports strategy planning. 

5. Conclusion 

This study proposes a hybrid probabilistic framework combining ARIMA-MCMC temporal 

modeling with Bayesian networks to forecast national performance in complex competitive systems. 

The ARIMA-MCMC component captures nonlinear temporal dependencies and optimizes parameter 

estimation through adaptive sampling, while the Bayesian network quantifies causal relationships 

among socioeconomic, demographic, and geopolitical variables. Validation on historical data shows 

robust accuracy, with prediction errors below 5% for established teams and discriminative power 

(AUC = 0.93) for emerging nations’ breakthrough potential. 

Key innovations include a dynamic parameter-tuning mechanism and a modular architecture 

enabling transferability to domains like supply chain optimization. Limitations include sensitivity to 

participant engagement data and static correlation assumptions. Future work will integrate real-time 

athlete performance metrics and adaptive learning to enhance resilience against systemic disruptions. 

This framework advances probabilistic modeling for complex systems, offering scalable solutions for 

engineering decision-making under uncertainty. 
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