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Abstract. In modern aviation flight, airspeed measurement is crucial. Traditional airspeed 
measurement methods such as Pitot tubes are limited in extreme environments, making laser 
velocimetry the preferred choice due to its high accuracy and strong adaptability. However, it is 
necessary to address the noise interference and dynamic changes of the Doppler frequency shift 
signal. In this study, a phased frequency estimation model is proposed to systematically address the 
challenges of noise analysis and signal frequency estimation according to the characteristics of 
different flight phases. For signals with known parameters, noise components separation and 
statistical characteristics analysis reveal specific frequency components of noise, low-frequency 
energy concentration, and Gaussian white noise characteristics. When the amplitude and phase of 
the signal are known but the frequency is not, if maximum likelihood estimation fails, the FFT is used 
for calculation, and its effectiveness under known parameters is verified using the Welch method. If 
all signal parameters are unknown, the autocorrelation analysis method is employed to achieve 
phase-free frequency estimation, combined with the Hanning window function to improve the FFT, 
forming an adaptive parameter-free frequency estimation method. This study establishes a 
systematic frequency estimation method system, and the models at each stage demonstrate strong 
adaptability in complex noise environments, providing a general solution for dynamic signal 
processing. The results provide new algorithmic support for airspeed measurement technology, 
promoting the improvement of laser velocimetry accuracy and reliability. 

Keywords: Fast Fourier Transform (FFT), White Noise, Frequency Estimation, Frequency Domain 
Analysis. 

1. Introduction 

With the rapid development of modern aviation technology, airspeed measurement, as an 

important parameter for aeronautics and navigation, its precision and reliability are crucial for 

assessing aircraft performance [1]. Traditional airspeed measurement methods such as pressure tube 

Pitot tube, hot-wire anemometer, and Laser Doppler Velocimetry, although performing well in many 

situations, may be limited in extreme temperatures, pressures, or complex environments. Laser 

velocimetry [2] is a feasible method for airspeed measurement. Its principle is to emit laser at a fixed 

frequency, and then obtain the signal light by using the Mie scattering effect on aerosol particles in 

the air for Doppler frequency shift [3]. By utilizing the coherent interference principle, a signal 

containing information about the Doppler frequency shift is obtained, and the frequency of this signal 

is estimated. In recent years, the method based on aircraft signal frequency estimation [4] has 

gradually become a research hotspot due to its potential application in various complex environments 

without the need for additional sensors. 

Zhang et al. proposed a method for airspeed measurement of unmanned aerial vehicles based on 

radar signal frequency estimation. This method can effectively estimate the instantaneous airspeed 

and climb rate of the aircraft and performs well in complex environments by analyzing modulation 

information in radar echo signals. Through the introduction of adaptive filtering technology, Li et al. 

proposed an improved signal frequency estimation algorithm, which significantly enhanced the 

robustness of the method in complex environments. The research results show that this algorithm can 

maintain high estimation accuracy even in high noise and multi-environment interference scenarios. 

Smith and Thompson demonstrated that the airspeed measurement method based on frequency 
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estimation techniques can meet the high-precision measurement requirements under extreme 

conditions in the hypersonic environment by simulating radar signals of hypersonic aircraft. 

Based on signal frequency estimation, the airspeed measurement method does not require 

additional sensors, is highly adaptive, minimally affected by the environment, and has strong 

versatility. It can measure airspeed in various environments, simplify complex problems, and is 

widely used. However, due to high computational complexity, the impact of signal noise on airspeed 

measurement accuracy, and performance in low-frequency and complex environments, there is 

currently no systematic frequency estimation method providing an algorithmic basis for airspeed 

measurement. 

This study involves examples of spacecraft in spaceflight, with a sampling interval of 

sTs
9102= , receiving multiple Doppler frequency shift signals. The actual data received comes 

from https://www.nmmcm.org.cn/. 

Given the complex situations of flight signals, this study establishes a systematic frequency 

estimation method system and discusses the following cases: 

(1) In stage 1 of the flight, it is known that the non-noise portion of the received signal has an 

amplitude of 4, a frequency of 
61030 Hz, and a phase of 45°. The noise characteristics of the 

received data in flight stage 1 are to be analyzed. 

(2) In flight phase 2, it is known that the amplitude of the actual received signal is 2, and the phase 

is 0°. Design a method to estimate the non-noise part frequency of the received signal in flight phase 

2. 

(3) Estimate the frequency of the received signal during flight phase 3 based on the database when 

the amplitude and phase of the non-noise part of the received signal are unknown. 

2. Analyze the characteristics of the noise z(t) received during flight phase 1 

2.1. Model Establishment 

A key step in airspeed measurement is the estimation of frequency information from the time series 

signal, where the signal satisfies the following expression: 

)()2sin()( 0 tztfAtx ++=                            (1) 

Where A  represents the amplitude of the signal, 0f  is the frequency of the signal,   is the 

phase of the signal, and )(tz  represents the noise information. The variables A , 0f ,   are all 

known quantities.  

2.2. Spectrum analysis method 

The received signal )(tx  can be considered as the sum of the noise part )(tz  and the non-noise 

part )2sin( 0  +tfA . Therefore, the expression for the noise )(tz  can be obtained: 

)2sin()()( 0  +−= tfAtxtz                           (2) 

Given the amplitude 4=A  of the non-noise part, the frequency at a specific value (unit: Hz), and 

the phase, by substituting these values into equation (2), we can obtain a discrete data-set of noise 
)(tz  changing with time t . The image of the separated received signal changing with time is shown 

in Figure 1. It is evident that the variations in the non-noise signal exhibit strong regularity, indicating 

that the randomness of the original signal mainly stems from the superimposed effects of the noise 

component. 
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Figure 1. Graph of signal variation over time 

Next, plot the frequency distribution histogram of the noise z(t) with time t as the independent 

variable, as shown in Figure 2. 

 

Figure 2. Histogram of the frequency distribution of noise z(t) 

Obviously, noise basically follows a normal distribution with a mean of zero and no 

autocorrelation, in which case 0.1=p , meaning that the null hypothesis of "noise follows a Gaussian 

white noise process with a mean of 0" cannot be rejected. 

Finally, utilizing the fast Fourier transform will convert it, enabling the transformation of time 

domain signals to frequency domain signals, as shown in Figure 3. 

 

Figure 3. Frequency spectrum under fast Fourier transform (FFT) ( A . , 0f  known) 
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Further analysis reveals the characteristics of the noise z(t): the noise mainly exhibits specific 

frequency components, with power concentrated at specific frequencies, low-frequency energy 

aggregation, energy attenuating at high frequencies, and the noise follows a Gaussian white noise 

process with a mean of 0. 

3. Frequency estimation of non-noise components of the received signal in 

Flight Phase 2 based on Fast Fourier Transform (FFT) 

3.1. Attempt to solve using Maximum Likelihood Estimation (MLE) 

The maximum likelihood estimation [5] is a common method in frequency estimation. The goal is 

to estimate the frequency. First, write out the likelihood function, which is the conditional probability 

density function of the frequency given the observed data. Assuming the noise is Gaussian white 

noise, the likelihood function is: 
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In order to maximize the likelihood function, it is necessary to take the logarithm and obtain the 

log-likelihood function: 
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The goal of maximum likelihood estimation is to find the values that maximize the log-likelihood 

function. 

( )00
0

maxarg fInLf
f

=                               (5) 

Given that the amplitude of the non-noise part at this time is A=2, phase 
0= , these values are 

substituted into the model above to calculate the estimation of the non-noise part frequency under 

maximum likelihood estimation (MLE) using Python software, as shown in Figure 4. 

 

Figure 4. Frequency spectrum under maximum likelihood estimation ( A ,   known) 

Although the non-noise signal frequency under the maximum likelihood estimation is estimated 

to be 30001265.2515Hz, there is a significant difference between the maximum likelihood estimation 

peak and the actual peak (red dashed line) at this time, so the maximum likelihood estimation is not 

applicable for solving the flight stage 2. Next, the more suitable Fast Fourier Transform is used for 

calculation, and the results are verified using the Welch method. 
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3.2. Solving using Fast Fourier Transform (FFT) 

Fast Fourier Transform (FFT) [6] is an efficient frequency analysis method that allows the 

transformation of time-domain signals to the frequency domain, making it easier to identify the main 

frequency components. The FFT method is suitable for stationary signals and can quickly find the 

main frequency components of a signal x(t) during flight phase 2. 

(1) Perform FFT transformation on signal x(t) to obtain frequency domain signal X(f). 

(2) Calculate the spectrum amplitude and find the frequency distribution with the maximum 

amplitude. 

(3) Use the frequency estimated by FFT as the initial value of the maximum likelihood estimation. 

The formula for FFT estimation is: 

( ) )2exp()(
1

0 i

N

i

i ftjtxfX −=
=

                          (6) 

When the amplitude A=2 and phase 
0=  are plugged into the model mentioned above, 

calculations were performed using Python software. The estimated non-noise component frequency 

based on Fast Fourier Transform (FFT) was found to be 40999836Hz, as shown in Figure 5. Thus, 

Fast Fourier Transform is an effective method for estimating the non-noise component frequency 

under the known conditions of amplitude and phase. 

 

Figure 5. Frequency spectrum under fast Fourier transform (FFT) ( A ,   known) 

3.3. Verification Analysis of FFT Results using Welch Method 

Given the lack of actual frequency data in Flight Phase 2, the Welch method was used to perform 

preliminary validation of the Fast Fourier Transform (FFT) estimates. A brief explanation of the 

Welch method is provided next: 

In signal processing, the Welch method divides the signal into multiple overlapping segments, 

applies a window function to each segment (such as a Hamming window or Hanning window), 

calculates the Fourier transform of each segment, and then averages the power spectra of all segments 

to obtain a smoothed estimate of power spectral density. This method provides a smooth and stable 

spectral estimate, suitable for analyzing non-stationary signals. By substituting the amplitude A=2 

and phase into the Welch model, and performing calculations using Python software, the estimated 

frequency of the non-noise part under the Welch method is 41015625Hz, as shown in Figure 6. 

By comparing the estimated non-noise frequency component at 40999836Hz obtained through the 

Fast Fourier Transform (FFT) in the previous section, it can be seen that the estimated non-noise 

frequency components calculated by the two methods are very close. In other words, the results 

obtained by the Welch method can largely provide strong evidence for the Fast Fourier Transform. 
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Figure 6. Frequency spectrum under Welch method ( A ,   unknown) 

3.4. Error Analysis for Flight Phase 2 

Given the absence of true values, the frequency estimate of the non-noise portion obtained by the 

Welch method is used as a substitute for the true value in the error analysis. Let the true frequency be 

41015625Hz0 =f . Thus, the frequency estimate of the non-noise portion based on the Fast Fourier 

Transform is taken as the measurement result, denoted as 40999836Hz0 =f . Substituting into the 

error analysis model [7], we obtain: Absolute error 15789= , Relative error 00
00.384951=r . 

Therefore, when the amplitude and phase of the non-noise portion of the received signal are known, 

the frequency estimation using the Fast Fourier Transform (FFT) can have an error controlled within 

a certain range (0.04%), showing excellent precision. 

4. Based on the improved Fast Fourier Transform for frequency estimation of 

the non-noise part of the received signal in flight phase 3 

4.1. Autocorrelation Methods 

Using autocorrelation method to estimate the periodicity of the signal, and hence infer the 

frequency. The autocorrelation function of a signal is defined as: 

dttxtxR )()()(  +=                               (7) 

Determine the frequency of the signal by assessing the stage characteristics of the function )(R . 

Estimate the period of the signal 0=T  
by finding the lag time of the first significant peak 0  in 

the autocorrelation function, and then calculate the signal's frequency 0f . 

The autocorrelation signal plot shows the variation of signal autocorrelation with delay time, as 

shown in Figure 7. The first significant peak in the plot appears at around 35.714MHz delay, 

indicating that the signal's main frequency estimate is 35.714 MHz. This estimate accurately reflects 

the periodic characteristics of the signal, confirming the effectiveness of autocorrelation analysis. 
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Figure 7. Autocorrelation Signal (Peak Detection) Graph 

The autocorrelation analysis method is particularly suitable for phase signals with unknown phase 

and amplitude. After detecting the phase, the estimated frequency can be used as a signal to adjust 

the signal processing algorithm to ensure accurate frequency estimation even without phase 

information. Through frequency domain analysis, the main peak frequency of the "Flight Period 3" 

signal was found to be approximately 33333333Hz, as shown in Figure 8. This frequency is the 

highest energy frequency point in the spectrum plot, indicating it is the main frequency component 

of the signal. 

 

Figure 8. Original signal, smoothed signal, and autocorrelation analysis results 

4.2. Improved Fast Fourier Transform  

Introduction to the Hanning window function: The Hanning window is a widely used window 

function in the fields of signal processing and spectrum analysis. The mathematical expression of the 

Hanning window is as follows: 
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Among them: )(nw  is the value of the window function at position, and n  is the index of the 

sample points in the window, starting from 0. N  is the length of the window (the number of sample 

points). 

This formula describes the values of the Hanning window function at discrete sample points. The 

characteristic of the window is that it has a smaller amplitude at the two ends, and a relatively higher 

amplitude in the central region. This helps reduce spectral leakage generated by truncating signals, 

improving the accuracy of spectral analysis. 

Improved Fast Fourier Transform [8, 9]: For the signal x(t) of flight stage 3, the following steps 

can be performed: 

1) Apply a window function )(nw  to signal x(t) first, then perform FFT transformation to obtain 

the frequency domain signal )( fx . 

2) Calculate the spectrum amplitude )( fx  and find the frequency distribution with the 

maximum amplitude. 

3) The frequency obtained by FFT estimation serves as the initial value for maximum likelihood 

estimation. The formula for FFT estimation is: 

( ) )2exp()(
1

0 i

N

i

ftjfxfX −=
=

                          (9) 

Taking the amplitude and phase of the non-noise part, substituting them into the aforementioned 

model, and calculating using Python software [10], the estimated frequency of the non-noise part 

based on the Fast Fourier Transform (FFT) was 34999860Hz, as shown in Figure 9. 

 

Figure 9. Frequency spectrum under Fast Fourier Transform (FFT) ( A ,   unknown) 

Thus, even under the conditions of unknown amplitude and phase, the improved fast Fourier 

transform remains an effective method for estimating the non-noise part frequencies. 

4.3. Error Analysis for Flight Phase 3 

Similarly, due to the absence of true values, the frequency estimate of the non-noise portion 

obtained using the autocorrelation method is used as a substitute for the true value in the error analysis. 

The frequency estimate of the non-noise portion based on the Fast Fourier Transform is taken as the 

measurement result. Thus, ,33333333Hz0 =f  34999860Hz0 =f . Substituting into the error 

analysis model, we obtain: Absolute error 1666527= , Relative error 0
050.04999581 =r . 

Therefore, when the amplitude and phase of the non-noise portion of the received signal are 

unknown, the frequency estimation using the Fast Fourier Transform (FFT) can have an error 

controlled within a certain range (5%). Although the precision is slightly worse, it is still reliable. 
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5. Conclusion 

This study conducted three tasks after noise separation: plotted z(t)'s frequency distribution 

histogram confirming Gaussian white noise (mean 0); analyzed four noise characteristics via FFT; 

and estimated noise-free signal frequency using FFT, Welch, and MLE to verify noise properties. 

MLE showed significant deviation in Phase 2 flight frequency estimation compared to actual peaks 

(red dashed line), prompting switch to FFT with Welch verification. For known amplitude/phase but 

unknown frequency, FFT effectively estimated non-noise frequency at 40999836Hz. For unknown 

parameters, autocorrelation analysis and Hanning window-enhanced FFT yielded 34999860Hz 

estimation. Error analysis revealed FFT's frequency estimation error for stationary signals remains 

within ±
0

05 , demonstrating its stability. The method boasts broad applicability, excellent interference 

resistance, and high measurement accuracy, providing a reliable technical means for stable 

continuous signal frequency analysis under normal conditions. Subsequent research will focus on 

addressing the challenges of non-stationary signal processing caused by meteorological disturbances, 

cloud scattering, and terrain occlusion in special circumstances, particularly optimizing algorithms 

for discontinuous signals with significant time interval spacing and brief duration characteristics. 
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