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Abstract. In modern aviation flight, airspeed measurement is crucial. Traditional airspeed
measurement methods such as Pitot tubes are limited in extreme environments, making laser
velocimetry the preferred choice due to its high accuracy and strong adaptability. However, it is
necessary to address the noise interference and dynamic changes of the Doppler frequency shift
signal. In this study, a phased frequency estimation model is proposed to systematically address the
challenges of noise analysis and signal frequency estimation according to the characteristics of
different flight phases. For signals with known parameters, noise components separation and
statistical characteristics analysis reveal specific frequency components of noise, low-frequency
energy concentration, and Gaussian white noise characteristics. When the amplitude and phase of
the signal are known but the frequency is not, if maximum likelihood estimation fails, the FFT is used
for calculation, and its effectiveness under known parameters is verified using the Welch method. If
all signal parameters are unknown, the autocorrelation analysis method is employed to achieve
phase-free frequency estimation, combined with the Hanning window function to improve the FFT,
forming an adaptive parameter-free frequency estimation method. This study establishes a
systematic frequency estimation method system, and the models at each stage demonstrate strong
adaptability in complex noise environments, providing a general solution for dynamic signal
processing. The results provide new algorithmic support for airspeed measurement technology,
promoting the improvement of laser velocimetry accuracy and reliability.

Keywords: Fast Fourier Transform (FFT), White Noise, Frequency Estimation, Frequency Domain
Analysis.

1. Introduction

With the rapid development of modern aviation technology, airspeed measurement, as an
important parameter for aeronautics and navigation, its precision and reliability are crucial for
assessing aircraft performance [1]. Traditional airspeed measurement methods such as pressure tube
Pitot tube, hot-wire anemometer, and Laser Doppler Velocimetry, although performing well in many
situations, may be limited in extreme temperatures, pressures, or complex environments. Laser
velocimetry [2] is a feasible method for airspeed measurement. Its principle is to emit laser at a fixed
frequency, and then obtain the signal light by using the Mie scattering effect on aerosol particles in
the air for Doppler frequency shift [3]. By utilizing the coherent interference principle, a signal
containing information about the Doppler frequency shift is obtained, and the frequency of this signal
is estimated. In recent years, the method based on aircraft signal frequency estimation [4] has
gradually become a research hotspot due to its potential application in various complex environments
without the need for additional sensors.

Zhang et al. proposed a method for airspeed measurement of unmanned aerial vehicles based on
radar signal frequency estimation. This method can effectively estimate the instantaneous airspeed
and climb rate of the aircraft and performs well in complex environments by analyzing modulation
information in radar echo signals. Through the introduction of adaptive filtering technology, Li et al.
proposed an improved signal frequency estimation algorithm, which significantly enhanced the
robustness of the method in complex environments. The research results show that this algorithm can
maintain high estimation accuracy even in high noise and multi-environment interference scenarios.
Smith and Thompson demonstrated that the airspeed measurement method based on frequency
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estimation techniques can meet the high-precision measurement requirements under extreme
conditions in the hypersonic environment by simulating radar signals of hypersonic aircraft.

Based on signal frequency estimation, the airspeed measurement method does not require
additional sensors, is highly adaptive, minimally affected by the environment, and has strong
versatility. It can measure airspeed in various environments, simplify complex problems, and is
widely used. However, due to high computational complexity, the impact of signal noise on airspeed
measurement accuracy, and performance in low-frequency and complex environments, there is
currently no systematic frequency estimation method providing an algorithmic basis for airspeed
measurement.

This study involves examples of spacecraft in spaceflight, with a sampling interval of

T. =2x10’s, receiving multiple Doppler frequency shift signals. The actual data received comes

from https://www.nmmcm.org.cn/.

Given the complex situations of flight signals, this study establishes a systematic frequency
estimation method system and discusses the following cases:

(1) In stage 1 of the flight, it is known that the non-noise portion of the received signal has an
amplitude of 4, a frequency of 30x10°Hz, and a phase of 45°. The noise characteristics of the
received data in flight stage 1 are to be analyzed.

(2) In flight phase 2, it is known that the amplitude of the actual received signal is 2, and the phase
is 0°. Design a method to estimate the non-noise part frequency of the received signal in flight phase
2.

(3) Estimate the frequency of the received signal during flight phase 3 based on the database when
the amplitude and phase of the non-noise part of the received signal are unknown.

2. Analyze the characteristics of the noise z(t) received during flight phase 1

2.1. Model Establishment

A key step in airspeed measurement is the estimation of frequency information from the time series
signal, where the signal satisfies the following expression:

x(t) = Asin27r fit+@)+z(1) (1)

Where A represents the amplitude of the signal, f, is the frequency of the signal, ¢ is the
phase of the signal, and z(#) represents the noise information. The variables 4 f, ¢ are all

known quantities.

2.2. Spectrum analysis method

The received signal x(¢) can be considered as the sum of the noise part z(¢) and the non-noise
part Asin(27 f,t+ @) . Therefore, the expression for the noise z(#) can be obtained:

z(t) =x(t)—Asin(27w f,t + @) (2)

Given the amplitude 4=4 of the non-noise part, the frequency at a specific value (unit: Hz), and
the phase, by substituting these values into equation (2), we can obtain a discrete data-set of noise
z(¢) changing with time ¢. The image of the separated received signal changing with time is shown

in Figure 1. It is evident that the variations in the non-noise signal exhibit strong regularity, indicating
that the randomness of the original signal mainly stems from the superimposed effects of the noise
component.
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Figure 1. Graph of signal variation over time

Next, plot the frequency distribution histogram of the noise z(t) with time t as the independent
variable, as shown in Figure 2.
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Figure 2. Histogram of the frequency distribution of noise z(t)

Obviously, noise basically follows a normal distribution with a mean of zero and no
autocorrelation, in which case p =1.0, meaning that the null hypothesis of "noise follows a Gaussian
white noise process with a mean of 0" cannot be rejected.

Finally, utilizing the fast Fourier transform will convert it, enabling the transformation of time
domain signals to frequency domain signals, as shown in Figure 3.
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Figure 3. Frequency spectrum under fast Fourier transform (FFT) (4.9, f, known)
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Further analysis reveals the characteristics of the noise z(t): the noise mainly exhibits specific
frequency components, with power concentrated at specific frequencies, low-frequency energy
aggregation, energy attenuating at high frequencies, and the noise follows a Gaussian white noise
process with a mean of 0.

3. Frequency estimation of non-noise components of the received signal in
Flight Phase 2 based on Fast Fourier Transform (FFT)

3.1. Attempt to solve using Maximum Likelihood Estimation (MLE)

The maximum likelihood estimation [5] is a common method in frequency estimation. The goal is
to estimate the frequency. First, write out the likelihood function, which is the conditional probability
density function of the frequency given the observed data. Assuming the noise is Gaussian white

noise, the likelihood function is:
)—Asin|2 <
1 exp[— (x(t,) sm( 7T fot + q)))z}

L =
W=l 20°

In order to maximize the likelihood function, it is necessary to take the logarithm and obtain the
log-likelihood function:

G)

ﬁ (x(tl. )— A sin(27z Sot: + (p))z )]

__N 2)_
mL(f,)=~3 In(270?) =D

The goal of maximum likelihood estimation is to find the values that maximize the log-likelihood
function.

fo =arg mje_olx InL(fO) (5)

Given that the amplitude of the non-noise part at this time is A=2, phase ¢ =0", these values are

substituted into the model above to calculate the estimation of the non-noise part frequency under
maximum likelihood estimation (MLE) using Python software, as shown in Figure 4.

Signal Frequency Spectrum

250000 i Estimated Frequency: 300012652515 Hz
200000
150000
100000

50000

= i
00 05 10 15 20 25
Frequency (Hz) 1e8

Figure 4. Frequency spectrum under maximum likelihood estimation ( 4, ¢ known)

Although the non-noise signal frequency under the maximum likelihood estimation is estimated
to be 30001265.2515Hz, there is a significant difference between the maximum likelihood estimation
peak and the actual peak (red dashed line) at this time, so the maximum likelihood estimation is not
applicable for solving the flight stage 2. Next, the more suitable Fast Fourier Transform is used for
calculation, and the results are verified using the Welch method.
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3.2. Solving using Fast Fourier Transform (FFT)

Fast Fourier Transform (FFT) [6] is an efficient frequency analysis method that allows the
transformation of time-domain signals to the frequency domain, making it easier to identify the main
frequency components. The FFT method is suitable for stationary signals and can quickly find the
main frequency components of a signal x(t) during flight phase 2.

(1) Perform FFT transformation on signal x(t) to obtain frequency domain signal X(f).

(2) Calculate the spectrum amplitude and find the frequency distribution with the maximum
amplitude.

(3) Use the frequency estimated by FFT as the initial value of the maximum likelihood estimation.
The formula for FFT estimation is:

X(fy)= 2 x(t) exp(=72aft) (6)

When the amplitude A=2 and phase @ =0" are plugged into the model mentioned above,

calculations were performed using Python software. The estimated non-noise component frequency
based on Fast Fourier Transform (FFT) was found to be 40999836Hz, as shown in Figure 5. Thus,
Fast Fourier Transform is an effective method for estimating the non-noise component frequency
under the known conditions of amplitude and phase.

Signal Frequency Spectrum (FFT)

250000 1 i === Main Frequency. 40999836 0007 Hz
200000 4
150000 {
100000 {

50000 1

04

" i, v v v v
00 05 1.0 15 20 25
Frequency (Hz) 1e8

Figure 5. Frequency spectrum under fast Fourier transform (FFT) (4, ¢ known)

3.3. Verification Analysis of FFT Results using Welch Method

Given the lack of actual frequency data in Flight Phase 2, the Welch method was used to perform
preliminary validation of the Fast Fourier Transform (FFT) estimates. A brief explanation of the
Welch method is provided next:

In signal processing, the Welch method divides the signal into multiple overlapping segments,
applies a window function to each segment (such as a Hamming window or Hanning window),
calculates the Fourier transform of each segment, and then averages the power spectra of all segments
to obtain a smoothed estimate of power spectral density. This method provides a smooth and stable
spectral estimate, suitable for analyzing non-stationary signals. By substituting the amplitude A=2
and phase into the Welch model, and performing calculations using Python software, the estimated
frequency of the non-noise part under the Welch method is 41015625Hz, as shown in Figure 6.

By comparing the estimated non-noise frequency component at 40999836Hz obtained through the
Fast Fourier Transform (FFT) in the previous section, it can be seen that the estimated non-noise
frequency components calculated by the two methods are very close. In other words, the results
obtained by the Welch method can largely provide strong evidence for the Fast Fourier Transform.
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Power Spectral Density using Welch Method
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Figure 6. Frequency spectrum under Welch method (4, ¢ unknown)

3.4. Error Analysis for Flight Phase 2

Given the absence of true values, the frequency estimate of the non-noise portion obtained by the
Welch method is used as a substitute for the true value in the error analysis. Let the true frequency be

fo =41015625Hz . Thus, the frequency estimate of the non-noise portion based on the Fast Fourier
Transform is taken as the measurement result, denoted as f; =40999836Hz . Substituting into the
error analysis model [7], we obtain: Absolute error &£=15789, Relative error 7 =0.384951 %, .

Therefore, when the amplitude and phase of the non-noise portion of the received signal are known,
the frequency estimation using the Fast Fourier Transform (FFT) can have an error controlled within
a certain range (0.04%), showing excellent precision.

4. Based on the improved Fast Fourier Transform for frequency estimation of
the non-noise part of the received signal in flight phase 3

4.1. Autocorrelation Methods

Using autocorrelation method to estimate the periodicity of the signal, and hence infer the
frequency. The autocorrelation function of a signal is defined as:

R(z) = [ x(t)x(t +7)dt (7)

Determine the frequency of the signal by assessing the stage characteristics of the function R(7).
Estimate the period of the signal 7' =7, by finding the lag time of the first significant peak 7, in
the autocorrelation function, and then calculate the signal's frequency f,.

The autocorrelation signal plot shows the variation of signal autocorrelation with delay time, as
shown in Figure 7. The first significant peak in the plot appears at around 35.714MHz delay,
indicating that the signal's main frequency estimate is 35.714 MHz. This estimate accurately reflects
the periodic characteristics of the signal, confirming the effectiveness of autocorrelation analysis.
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Figure 7. Autocorrelation Signal (Peak Detection) Graph

The autocorrelation analysis method is particularly suitable for phase signals with unknown phase
and amplitude. After detecting the phase, the estimated frequency can be used as a signal to adjust
the signal processing algorithm to ensure accurate frequency estimation even without phase
information. Through frequency domain analysis, the main peak frequency of the "Flight Period 3"
signal was found to be approximately 33333333Hz, as shown in Figure 8. This frequency is the
highest energy frequency point in the spectrum plot, indicating it is the main frequency component
of the signal.
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Figure 8. Original signal, smoothed signal, and autocorrelation analysis results

4.2. Improved Fast Fourier Transform

Introduction to the Hanning window function: The Hanning window is a widely used window
function in the fields of signal processing and spectrum analysis. The mathematical expression of the
Hanning window is as follows:

2

TN
=0.5-0.5cos
w(n) (o

) (8)
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Among them: w(n) is the value of the window function at position, and #n is the index of the

sample points in the window, starting from 0. N is the length of the window (the number of sample
points).

This formula describes the values of the Hanning window function at discrete sample points. The
characteristic of the window is that it has a smaller amplitude at the two ends, and a relatively higher
amplitude in the central region. This helps reduce spectral leakage generated by truncating signals,
improving the accuracy of spectral analysis.

Improved Fast Fourier Transform [8, 9]: For the signal x(t) of flight stage 3, the following steps
can be performed:

1) Apply a window function w(n) to signal x(t) first, then perform FFT transformation to obtain

the frequency domain signal x(f).
2) Calculate the spectrum amplitude |x( f )| and find the frequency distribution with the

maximum amplitude.
3) The frequency obtained by FFT estimation serves as the initial value for maximum likelihood
estimation. The formula for FFT estimation is:

X(J%)zZIx(f)l exp(—j271,) 9)

Taking the amplitude and phase of the non-noise part, substituting them into the aforementioned
model, and calculating using Python software [10], the estimated frequency of the non-noise part
based on the Fast Fourier Transform (FFT) was 34999860Hz, as shown in Figure 9.
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Figure 9. Frequency spectrum under Fast Fourier Transform (FFT) (A4, ¢ unknown)

Thus, even under the conditions of unknown amplitude and phase, the improved fast Fourier
transform remains an effective method for estimating the non-noise part frequencies.

4.3. Error Analysis for Flight Phase 3

Similarly, due to the absence of true values, the frequency estimate of the non-noise portion
obtained using the autocorrelation method is used as a substitute for the true value in the error analysis.
The frequency estimate of the non-noise portion based on the Fast Fourier Transform is taken as the

measurement result. Thus, f,=33333333Hz, f =34999860Hz . Substituting into the error

analysis model, we obtain: Absolute error & =1666527, Relative error 7 =0.04999581 <59 .

Therefore, when the amplitude and phase of the non-noise portion of the received signal are
unknown, the frequency estimation using the Fast Fourier Transform (FFT) can have an error
controlled within a certain range (5%). Although the precision is slightly worse, it is still reliable.
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5. Conclusion

This study conducted three tasks after noise separation: plotted z(t)'s frequency distribution
histogram confirming Gaussian white noise (mean 0); analyzed four noise characteristics via FFT;
and estimated noise-free signal frequency using FFT, Welch, and MLE to verify noise properties.
MLE showed significant deviation in Phase 2 flight frequency estimation compared to actual peaks
(red dashed line), prompting switch to FFT with Welch verification. For known amplitude/phase but
unknown frequency, FFT effectively estimated non-noise frequency at 40999836Hz. For unknown
parameters, autocorrelation analysis and Hanning window-enhanced FFT yielded 34999860Hz
estimation. Error analysis revealed FFT's frequency estimation error for stationary signals remains
within +59/ , demonstrating its stability. The method boasts broad applicability, excellent interference

resistance, and high measurement accuracy, providing a reliable technical means for stable
continuous signal frequency analysis under normal conditions. Subsequent research will focus on
addressing the challenges of non-stationary signal processing caused by meteorological disturbances,
cloud scattering, and terrain occlusion in special circumstances, particularly optimizing algorithms
for discontinuous signals with significant time interval spacing and brief duration characteristics.
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