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Abstract. Highways have the characteristic of closed-loop traffic flow, presenting unique challenges
for traffic surveillance and management. This study focuses on addressing the problem of detecting
abnormal events in areas that cannot be directly monitored. These areas typically lack the necessary
infrastructure, such as cameras, radar, or other sensing devices, making it difficult to identify traffic
abnormal events such as accidents or congestion. To tackle this challenge, this paper proposes a
discriminative algorithm for detecting abnormal events in highway surveillance blind spots. Firstly,
we simulate traffic scenarios including both abnormal events and normal situations using the VISSIM
software, and select speed, density, and occupancy as feature parameters. Subsequently, this study
applies the K-means clustering algorithm to judge whether an abnormal event occurs. Experimental
results show that the proposed algorithm exhibits high precision (91.4%) in identifying abnormal
events, with a false negative rate of only 4.17%. Moreover, the algorithm demonstrates good
robustness against disturbances when individual raw parameters become anomalous.
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1. Introduction

Recent studies have focused on improving traffic safety through advanced data analysis methods
and technologies. Zhang et al. [1] used Bayesian Networks (BN) to model the causal relationships
between traffic events and traffic state parameters, updating event probabilities through bidirectional
inference. Wu et al. [2] adopted a deep learning approach for traffic state discrimination,
demonstrating higher detection accuracy through simulations in VISSIM software. Aliari et al. [3]
employed neural network models and sliding time windows to monitor speed sequences, reducing
false alarm rates in imbalanced datasets. C.L. Qiu et al. [4] proposed an improved DBSCAN
clustering algorithm to identify accident-prone areas by adjusting parameters epsilon and minPts. Li
et al. [5] introduced the Traffic Safety Status Deep Clustering Network (TSDCN) to cluster traffic
safety conditions and quantify collision risk levels. Jia et al. [6] combined kernel density estimation
(KDE) and spatial clustering techniques to assess land use characteristics, such as Point of Interest
(POI) data. Chen et al. [7] conducted real-time traffic state recognition using traffic software
simulation and the Fuzzy C-Means (FCM) algorithm. Du [8] improved the FCM algorithm using
entropy weighting for feature selection and applied it to train a multi-class Support Vector Machine
(SVM). Pi et al. [9] implemented traffic congestion event identification using Hard C-Means (HCM)
and FCM algorithms. Li [10] utilized the FCM algorithm to identify different traffic state indicators,
demonstrating its high feasibility. Wang et al. [11] proposed a fuzzy logic-based urban traffic accident
prediction model and introduced a safety enhancement factor to improve road safety. Alkandari et al.
[12] developed an accident detection system based on fuzzy clustering algorithms and demonstrated
accident detection scenarios using the FuzzyTech program.

This study addresses the challenge of detecting abnormal events in highway surveillance blind
spots. We propose a discriminative algorithm using VISSIM simulation and the K-means algorithm
to identify abnormal events. This method aims to fill the research gap in existing traffic surveillance
systems and enhance the safety of highway sections in surveillance blind spots.

21



Highlights in Science, Engineering and Technology AMME 2024
Volume 126 (2025)

2. Methodology

2.1. Data Source

Highway abnormal events, such as vehicle breakdowns or traffic congestion due to extreme
weather, are simulated using VISSIM software. Scenarios include both abnormal event occurrences
and non-occurrences, with a six-lane configuration in each direction. The simulation runs from 10:00
to 12:00, with an abnormal event occurring at 10:30. A total of 100 abnormal events and 20 non-
abnormal events are simulated. Data collection points a and b are set up 50 meters upstream and
downstream of the affected lane, respectively. Simulation parameters for abnormal event occurrences
are detailed in Table 1. The simulation duration is 2 hours with data collected every 5 minutes. An
example of the simulation and data collection is shown in Fig. 1.The simulation parameters for
abnormal event occurrences are shown in Table 1. An example of the abnormal event occurrence
simulation and data collection is illustrated in Fig 1.

Table 1. Parameters for the simulation of abnormal events occurrence

Parameters Range Units

Upstream traffic volume 6000, 5900, ..., 4000 veh/h

Number of lanes 3, 2 (one lane closed) lanes
Proportion of large vehicles 10%, 15%, ..., 30% %
Length of lane affected by the event 300 m

|
= & BERE 10

S 720 (NE. M. DS NG EECRE) L] W@ AD MUE. DEMRESTOEEE)  X2eBUT. SeEEE)

Figure 1. VISSIM simulation and data acquisition example

2.2. Selection of Discriminatory Indicators

When an abnormal event occurs on a highway, the traffic parameters recorded by the detection
equipment exhibit noticeable differences, and the rates of change for these parameters also vary. To
quickly detect abnormal events while ensuring that the changes in parameters are substantial,
choosing the rate of change as an evaluation parameter is reasonable. As an assessment metric, the
rate of change can quantify the speed of parameter changes before and after an abnormal event.
Specifically, the rate of change can be used to measure the relationship between the magnitude of

parameter changes and time during an abnormal event. Its calculation formula is:
N2/Nj

Where: N, represents the average value of the parameter after the abnormal event; N, represents
the average value of the parameter before the abnormal event; AT is the time difference of the
parameter change, measured in h.
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Figure 2. Comparison of changes in traffic volume with or without the occurrence of abnormal
events
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Figure 3. Comparison of changes in speed with or without the occurrence of abnormal events
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Figure 4. Comparison of changes in density with or without the occurrence of abnormal events
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Figure 5. Comparison of changes in occupancy rate with or without the occurrence of abnormal
events
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Fig. 2, 3, 4, and 5 display the changes in traffic flow, speed, density, and occupancy rate over a 2-
hour period for both non-occurrence and occurrence of abnormal events.

Using Equation (1) to calculate the rate of change, we can effectively discern the trend of parameter
changes following an abnormal event and respond more promptly to these changes, thereby enabling
timely detection of traffic abnormal events. Moreover, a higher rate of change indicates a larger
change in the parameter, further enhancing the ability to identify abnormal events.

The rate of change for each parameter is calculated and summarized in Table 2. Among these
parameters, speed, density, and occupancy show more significant performance in discriminating
abnormal events, indicating that occupancy, speed, and density have stronger sensitivity and
representativeness. Therefore, selecting speed, density, and occupancy as feature parameters is more
suitable for discriminating whether an abnormal event occurs.

Table 2. CR values corresponding to different transportation parameters

Traffic Parameter Name Rate of Change
Traffic volume 3.952
Density 13.751
Speed 17.542
Occupancy rate 14.844

2.3. Abnormal Events Occurrence Discrimination based on K-means Clustering Agorithm

2.3.1. Algorithm Selection

Clustering is an unsupervised learning method that groups similar data objects into distinct clusters,
maximizing intra-cluster similarity and inter-cluster dissimilarity. Distance measures, such as
Euclidean distance, are used to quantify object similarity and serve as the basis for grouping. Common
clustering algorithms include k-means, density-based, and hierarchical clustering. For the purpose of
discriminating between normal and abnormal events, the k-means algorithm is suitable due to its
simplicity and computational efficiency. By setting the number of clusters to 2, this approach
effectively differentiates between normal and abnormal traffic states, facilitating the identification of
abnormal events.

2.3.2. Discrimination Steps Based on the K-Means Clustering Algorithm for Abnormal Events

The specific process for discriminating the occurrence of abnormal events based on the K-means
clustering algorithm is as follows:

First, obtain traffic data for both the non-occurrence and occurrence of abnormal events through
VISSIM simulation. Then, through analysis, select density, speed, and occupancy as feature
parameters and establish a dataset D. Next, preprocess the data and divide the preprocessed dataset
containing various sample data into training and testing sets. Set the number of cluster centers to 2
and randomly initialize the cluster centers. Follow the basic steps of the K-means clustering algorithm,
iteratively updating the cluster centers until the clustering result converges and the final cluster
centers are obtained. Combine the cluster centers for both the non-occurrence and occurrence of
abnormal events, and calculate the Euclidean distance [1 between the input feature data and the cluster
center for the non-occurrence of abnormal events and the Euclidean distance [> between the input
feature data and the cluster center for the occurrence of abnormal events. If 11<l>, then it is determined
that an abnormal event has not occurred; otherwise, it is determined that an abnormal event has
occurred, and the discrimination process ends.

In the preprocessing steps, the min-max normalization method was adopted. This method linearly
scales the data to a specified range, which enhances the convergence speed and accuracy of the
clustering algorithm and ensures that the contribution of different features to the clustering results is
balanced.

X*: X-Xmin (2)

Xmax~Xmin
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To prevent the interference of abnormal data, clustering uses all three feature parameters. When
one of the feature parameters encounters issues during the discrimination process, the impact on the
overall discrimination is reduced, thus improving the robustness and disturbance resistance of
anomaly event detection. The clustering effect of the speed-density-occupancy feature parameters is

shown in Fig. 6.
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Figure 6. Speed-Density-Occupancy rate three feature parameters clustering effect diagram
The cluster center values obtained were then reverse-normalized using the following reverse-

normalization formula:
*
X=X (Xmax'Xmin)+Xmin (3)

As shown in Fig. 6, blue sample points represent the class categorized as non-occurrence of an
abnormal event, while yellow sample points represent the class categorized as occurrence of an
abnormal event. The blue triangle represents the cluster center for the non-occurrence of an abnormal
event, and the yellow triangle represents the cluster center for the occurrence of an abnormal event.
The specific values after reverse-normalization are shown in Table 3.

Table 3. Cluster Centers for Speed-Density-Occupancy Feature Parameters After Normalization

Traffic State Speed (km/h) Density (veh/km) Occupancy rate (%)
Abnormal event Occurrence 30.6 117.6 43.3
Non-Occurrence of Abnormal event 78.4 46.9 31.8

3. Result

A dataset consisting of 90 instances of abnormal events and 18 instances of non-occurrence of
abnormal events was used as the training set, while the remaining 10 instances of abnormal events
and 2 instances of non-occurrence of abnormal events were used as the test set. Cross-validation was
employed to evaluate the model's performance by repeatedly dividing the training set and test set,
effectively reducing any bias in the model due to uneven data distribution. An abnormal event
sequence was input, and the speed-density-occupancy three-feature-parameter clustering algorithm
was applied for discrimination. The clustering results are shown in the figure below, and the
discrimination results for whether an abnormal event occurs are presented in Fig. 7.
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Figure 7. Discriminative results of whether an abnormal event occurs or not based on K-means
clustering algorithm
It is evident that the model achieves a precision rate of over 90% in identifying abnormal events,
with a false negative rate of 4.17%. This confirms the effectiveness of the proposed clustering
algorithm in discriminating highway abnormal events. Furthermore, when one of the original three
parameters exhibits abnormal behavior, the impact on the algorithm is minimal, indicating that the
algorithm also possesses good anti-interference capabilities.

4. Conclusion

This study has some limitations in abnormal event detection on highways based on the K-means
algorithm:

(1) This paper analyzes data simulated by VISSIM, which may present issues such as deviations
from real-world scenarios, limitations in the selection of feature parameters, insufficient robustness
to disturbances, and problems with data quality and quantity.

(2) The sensitivity of the K-means algorithm to initial cluster centroids can lead to unstable results,
and its assumption that clusters are spherical may not align with the actual distribution of data.
Additionally, K-means performs poorly with noise and outlier data.

To overcome these limitations, future research could consider incorporating more diverse real
traffic data, exploring richer feature parameters, optimizing clustering algorithms to improve handling
of noisy data and outliers, and attempting model fusion or ensemble learning methods to enhance the
overall performance and stability of the detection system.
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