Progress in Research on Mechanical Ventilation and Diaphragm Dysfunction

Authors

  • Dilida Duziyelebai
  • Yugang Zhuang

DOI:

https://doi.org/10.54097/1n66ca30

Keywords:

Mechanical ventilation, Diaphragm dysfunction, Diaphragm function assessment, Diaphragm-protective ventilation strategies

Abstract

Mechanical ventilation is clinically used to assist in the gas exchange for patients who need to maintain adequate alveolar ventilation. Its common indications include respiratory failure, heart failure, drug overdose, and surgery. Although mechanical ventilation can save the lives of patients with respiratory failure, prolonged use can lead to diaphragm atrophy and contraction dysfunction. Currently, there is a lack of effective assessment and monitoring methods for diaphragm dysfunction in clinical practice, leading to insufficient attention to diaphragm function. Understanding the pathophysiological process of diaphragm dysfunction, assessment methods, and prevention and treatment strategies is crucial for improving the prognosis of ICU patients on mechanical ventilation. This paper briefly introduces the pathogenesis of diaphragm dysfunction, current assessment methods, and prevention and treatment strategies, hoping to provide some assistance to clinical practice.

Downloads

Download data is not yet available.

References

[1] Karageorgos V, Proklou A, Vaporidi K. Lung and diaphragm protective ventilation: a synthesis of recent data. Expert Rev Respir Med. 2022; 16(4):375-390. doi:10.1080/17476348.2022.2060824

[2] Fogarty MJ, Mantilla CB, Sieck GC. Breathing: Motor Control of Diaphragm Muscle. Physiology (Bethesda). 2018; 33(2):113-126. doi:10.1152/physiol.00002.2018

[3] Kabitz HJ, Walterspacher S, Walker D, Windisch W. Inspiratory muscle strength in chronic obstructive pulmonary disease depending on disease severity. Clin Sci (Lond). 2007; 113(5):243-249. doi:10.1042/CS20060362

[4] Kabitz HJ, Sonntag F, Walker D, et al. Diabetic polyneuropathy is associated with respiratory muscle impairment in type 2 diabetes. Diabetologia. 2008; 51(1):191-197. doi:10.1007/s00125-007-0856-0

[5] Kabitz HJ, Windisch W, Schönhofer B. Ventilator induzierter Zwerchfellschaden: ein Update [Understanding ventilator-induced diaphragmatic dysfunction (VIDD): progress and advances]. Pneumologie. 2013; 67(8):435-441. doi:10.1055/s-0033-1344241

[6] Larsson L, Friedrich O. Critical Illness Myopathy (CIM) and Ventilator-Induced Diaphragm Muscle Dysfunction (VIDD): Acquired Myopathies Affecting Contractile Proteins. Compr Physiol. 2016; 7(1):105-112. Published 2016 Dec 6. doi:10.1002/cphy.c150054

[7] Bruni A, Garofalo E, Pasin L, et al. Diaphragmatic Dysfunction After Elective Cardiac Surgery: A Prospective Observational Study. J Cardiothorac Vasc Anesth. 2020; 34(12):3336-3344. doi: 10.1053/j.jvca.2020.06.038

[8] Dimopoulou I, Daganou M, Dafni U, et al. Phrenic nerve dysfunction after cardiac operations: electrophysiologic evaluation of risk factors. Chest. 1998; 113(1):8-14. doi:10.1378/chest.113.1.8

[9] Viires N, Pavlovic D, Pariente R, Aubier M. Effects of steroids on diaphragmatic function in rats. Am Rev Respir Dis. 1990; 142(1):34-38. doi:10.1164/ajrccm/142.1.34

[10] Bruells CS, Maes K, Rossaint R, et al. Sedation using propofol induces similar diaphragm dysfunction and atrophy during spontaneous breathing and mechanical ventilation in rats. Anesthesiology. 2014; 120(3):665-672. doi:10.1097/ALN.0000000000000125

[11] Schepens T, Fard S, Goligher EC. Assessing Diaphragmatic Function. Respir Care. 2020; 65(6):807-819. doi:10.4187/respcare.07410

[12] Levine S, Nguyen T, Taylor N, et al. Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans. N Engl J Med. 2008; 358(13):1327-1335. doi:10.1056/NEJMoa070447

[13] Itagaki T. Diaphragm-protective mechanical ventilation in acute respiratory failure. J Med Invest. 2022; 69(3.4):165-172. doi:10.2152/jmi.69.165

[14] Orozco-Levi M, Lloreta J, Minguella J, Serrano S, Broquetas JM, Gea J. Injury of the human diaphragm associated with exertion and chronic obstructive pulmonary disease. Am J Respir Crit Care Med. 2001; 164(9):1734-1739. doi:10.1164/ajrccm.164.9.2011150

[15] Jiang TX, Reid WD, Belcastro A, Road JD. Load dependence of secondary diaphragm inflammation and injury after acute inspiratory loading. Am J Respir Crit Care Med. 1998; 157(1):230-236. doi:10.1164/ajrccm.157.1.9702051

[16] Pellegrini M, Hedenstierna G, Roneus A, Segelsjö M, Larsson A, Perchiazzi G. The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. Am J Respir Crit Care Med. 2017; 195(12):1608-1616. doi:10.1164/rccm.201605-0992OC

[17] Schepens T, Dres M, Heunks L, Goligher EC. Diaphragm-protective mechanical ventilation. Curr Opin Crit Care. 2019; 25(1):77-85. doi:10.1097/MCC.0000000000000578

[18] Proske U, Morgan DL. Muscle damage from eccentric exercise: mechanism, mechanical signs, adaptation and clinical applications. J Physiol. 2001; 537(Pt 2):333-345. doi:10.1111/j.1469-7793.2001.00333.x

[19] Gea J, Zhu E, Gáldiz JB, et al. Consecuencias de las contracciones excéntricas del diafragma sobre su función [Functional consequences of eccentric contractions of the diaphragm]. Arch Bronconeumol. 2009; 45(2):68-74. doi: 10.1016/j.arbres.2008.04.003

[20] Putensen C, Zech S, Wrigge H, et al. Long-term effects of spontaneous breathing during ventilatory support in patients with acute lung injury. Am J Respir Crit Care Med. 2001; 164(1):43-49. doi: 10.1164/ajrccm.164.1.2001078

[21] Putensen C, Mutz NJ, Putensen-Himmer G, Zinserling J. Spontaneous breathing during ventilatory support improves ventilation-perfusion distributions in patients with acute respiratory distress syndrome. Am J Respir Crit Care Med. 1999; 159(4 Pt 1):1241-1248. doi: 10.1164/ajrccm.159.4.9806077

[22] Goligher EC, Jonkman AH, Dianti J, et al. Clinical strategies for implementing lung and diaphragm-protective ventilation: avoiding insufficient and excessive effort. Intensive Care Med. 2020; 46(12):2314-2326. doi: 10.1007/s00134-020-06288-9

[23] Caruso P, Albuquerque AL, Santana PV, et al. Diagnostic methods to assess inspiratory and expiratory muscle strength. J Bras Pneumol. 2015; 41(2):110-123. doi: 10.1590/S1806-37132015000004474

[24] Wragg S, Aquilina R, Moran J, et al. Comparison of cervical magnetic stimulation and bilateral percutaneous electrical stimulation of the phrenic nerves in normal subjects. Eur Respir J. 1994; 7(10):1788-1792. doi: 10.1183/09031936.94.07101788

[25] Bolton CF, Grand'Maison F, Parkes A, Shkrum M. Needle electromyography of the diaphragm. Muscle Nerve. 1992; 15(6):678-681. doi: 10.1002/mus.880150608

[26] AGOSTONI E, SANT'AMBROGIO G, DEL PORTILLO CARRASCO H. Electromyography of the diaphragm in man and transdiaphragmatic pressure. J Appl Physiol. 1960; 15:1093-1097. doi: 10.1152/jappl.1960.15.6.1093

[27] Saleem Khan K, Meaney J, Martin-Loeches I, Collins DV. MRI Assessment of Global and Regional Diaphragmatic Motion in Critically Ill Patients Following Prolonged Ventilator Weaning. Med Sci (Basel). 2019; 7(5):66. Published 2019 May 22. doi: 10.3390/medsci7050066

[28] Santana PV, Cardenas LZ, Albuquerque ALP. Diaphragm Ultrasound in Critically Ill Patients on Mechanical Ventilation-Evolving Concepts. Diagnostics (Basel). 2023; 13(6):1116. Published 2023 Mar 15. doi: 10.3390/diagnostics13061116

[29] Goligher EC, Laghi F, Detsky ME, et al. Measuring diaphragm thickness with ultrasound in mechanically ventilated patients: feasibility, reproducibility and validity. Intensive Care Med. 2015; 41(4):734. doi: 10.1007/s00134-015-3724-2

[30] Boussuges A, Gole Y, Blanc P. Diaphragmatic motion studied by m-mode ultrasonography: methods, reproducibility, and normal values. Chest. 2009; 135(2):391-400. doi: 10.1378/chest.08-1541

[31] Mariani LF, Bedel J, Gros A, et al. Ultrasonography for Screening and Follow-Up of Diaphragmatic Dysfunction in the ICU: A Pilot Study. J Intensive Care Med. 2016; 31(5):338-343. doi: 10.1177/0885066615583639

[32] Kim WY, Suh HJ, Hong SB, Koh Y, Lim CM. Diaphragm dysfunction assessed by ultrasonography: influence on weaning from mechanical ventilation. Crit Care Med. 2011; 39(12):2627-2630. doi: 10.1097/CCM.0b013e3182266408

[33] Grosu HB, Lee YI, Lee J, Eden E, Eikermann M, Rose KM. Diaphragm muscle thinning in patients who are mechanically ventilated. Chest. 2012; 142(6):1455-1460. doi: 10.1378/chest.11-1638

[34] Boon AJ, Harper CJ, Ghahfarokhi LS, Strommen JA, Watson JC, Sorenson EJ. Two-dimensional ultrasound imaging of the diaphragm: quantitative values in normal subjects. Muscle Nerve. 2013; 47(6):884-889. doi: 10.1002/mus.23702

[35] Fayssoil A, Behin A, Ogna A, et al. Diaphragm: Pathophysiology and Ultrasound Imaging in Neuromuscular Disorders. J Neuromuscul Dis. 2018; 5(1):1-10. doi: 10.3233/JND-170276

[36] Sarwal A, Walker FO, Cartwright MS. Neuromuscular ultrasound for evaluation of the diaphragm. Muscle Nerve. 2013;47(3): 319-329. doi: 10.1002/mus.23671

[37] Akoumianaki E, Maggiore SM, Valenza F, et al. The application of esophageal pressure measurement in patients with respiratory failure. Am J Respir Crit Care Med. 2014; 189(5):520-531. doi: 10.1164/rccm.201312-2193CI

[38] Truwit JD, Marini JJ. Validation of a technique to assess maximal inspiratory pressure in poorly cooperative patients. Chest. 1992; 102(4):1216-1219. doi: 10.1378/chest.102.4.1216

[39] Minami T, Manzoor K, McCool FD. Assessing Diaphragm Function in Chest Wall and Neuromuscular Diseases. Clin Chest Med. 2018; 39(2):335-344. doi: 10.1016/j.ccm.2018.01.013

[40] Morais CCA, Koyama Y, Yoshida T, et al. High Positive End-Expiratory Pressure Renders Spontaneous Effort Noninjurious. Am J Respir Crit Care Med. 2018; 197(10):1285-1296. doi: 10.1164/rccm.201706-1244OC

[41] Pellegrini M, Hedenstierna G, Roneus A, Segelsjö M, Larsson A, Perchiazzi G. The Diaphragm Acts as a Brake during Expiration to Prevent Lung Collapse. Am J Respir Crit Care Med. 2017; 195(12):1608-1616. doi: 10.1164/rccm.201605-0992OC

[42] Goligher EC, Fan E, Herridge MS, et al. Evolution of Diaphragm Thickness during Mechanical Ventilation. Impact of Inspiratory Effort. Am J Respir Crit Care Med. 2015; 192(9):1080-1088. doi: 10.1164/rccm.201503-0620OC

[43] Vaporidi K. NAVA and PAV+ for lung and diaphragm protection. Curr Opin Crit Care. 2020; 26(1):41-46. doi: 10.1097/MCC.0000000000000684

[44] Younes M. Proportional assist ventilation, a new approach to ventilatory support. Theory. Am Rev Respir Dis. 1992; 145(1):114-120. doi: 10.1164/ajrccm/145.1.114

[45] Sinderby C, Navalesi P, Beck J, et al. Neural control of mechanical ventilation in respiratory failure. Nat Med. 1999; 5(12):1433-1436. doi: 10.1038/71012

[46] Di Mussi R, Spadaro S, Mirabella L, et al. Impact of prolonged assisted ventilation on diaphragmatic efficiency: NAVA versus PSV. Crit Care. 2016; 20:1. Published 2016 Jan 5. doi: 10.1186/s13054-015-1178-0

[47] Jonkman AH, Rauseo M, Carteaux G, et al. Proportional modes of ventilation: technology to assist physiology. Intensive Care Med. 2020; 46(12):2301-2313. doi: 10.1007/s00134-020-06206-z

[48] De Wit M, Pedram S, Best AM, Epstein SK. Observational study of patient-ventilator asynchrony and relationship to sedation level. J Crit Care. 2009; 24(1):74-80. doi: 10.1016/j.jcrc.2008.08.011

[49] Shehabi Y, Bellomo R, Kadiman S, et al. Sedation Intensity in the First 48 Hours of Mechanical Ventilation and 180-Day Mortality: A Multinational Prospective Longitudinal Cohort Study. Crit Care Med. 2018; 46(6):850-859. doi: 10.1097/CCM.0000000000003071

[50] Goligher EC, Combes A, Brodie D, et al. Determinants of the effect of extracorporeal carbon dioxide removal in the SUPERNOVA trial: implications for trial design. Intensive Care Med. 2019; 45(9):1219-1230. doi: 10.1007/s00134-019-05708-9

[51] Kolobow T, Gattinoni L, Tomlinson TA, Pierce JE. Control of breathing using an extracorporeal membrane lung. Anesthesiology. 1977; 46(2):138-141. doi: 10.1097/00000542-197702000-00012

[52] Goligher EC, Dres M, Patel BK, et al. Lung- and Diaphragm-Protective Ventilation. Am J Respir Crit Care Med. 2020; 202(7):950-961. doi: 10.1164/rccm.202003-0655CP

[53] Doorduin J, Nollet JL, Roesthuis LH, et al. Partial Neuromuscular Blockade during Partial Ventilatory Support in Sedated Patients with High Tidal Volumes. Am J Respir Crit Care Med. 2017;195(8):1033-1042. doi: 10.1164/rccm.201605-1016OC

[54] Froese AB, Bryan AC. Effects of anesthesia and paralysis on diaphragmatic mechanics in man. Anesthesiology. 1974; 41(3): 242-255. doi:10.1097/00000542-197409000-00006

[55] Reynolds S, Ebner A, Meffen T, et al. Diaphragm Activation in Ventilated Patients Using a Novel Transvenous Phrenic Nerve Pacing Catheter. Crit Care Med. 2017; 45(7): e691-e694. doi:10.1097/CCM.0000000000002366

Downloads

Published

10-01-2025

How to Cite

Duziyelebai, D., & Zhuang, Y. (2025). Progress in Research on Mechanical Ventilation and Diaphragm Dysfunction. Highlights in Science, Engineering and Technology, 126, 118-127. https://doi.org/10.54097/1n66ca30